device = 'cuda' torch.backends.cudnn.benchmark = True transform = transforms.Compose( [ transforms.Resize(args.size), transforms.CenterCrop(args.size), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ] ) loader_train, loader_val, _ = \ iPERLoader(data_root=args.path, batch=args.batch_size, transform=transform).data_load() model = VQVAE_SPADE(embed_dim=128, parser=parser).to(device) model = nn.DataParallel(model).cuda() print('Loading Model_SPADE...', end='') model.load_state_dict(torch.load('/p300/mem/mem_src/SPADE/checkpoint/as_101/vqvae_072.pt')) model.eval() print('Complete !') optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = None model_cond = poseVQVAE().to(device) model_cond = nn.DataParallel(model_cond).cuda() print('Loading Model_condition...', end='') model_cond.load_state_dict(torch.load('/p300/mem/mem_src/checkpoint/pose_06_black/vqvae_016.pt')) model_cond.eval() print('Complete !')
device = 'cuda' torch.backends.cudnn.benchmark = True transform = transforms.Compose([ transforms.Resize(args.size), transforms.CenterCrop(args.size), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ]) _, _, loader = iPERLoader(data_root=args.path, batch=args.batch_size, transform=transform).data_load() model = VQVAE_SPADE(embed_dim=128, parser=parser).to(device) model = nn.DataParallel(model).cuda() # print('Loading Model...', end='') # model.load_state_dict(torch.load('/p300/mem/mem_src/SPADE/checkpoint/app_v04/vqvae_089.pt')) # model.eval() # print('Complete !') optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = None model_cond = poseVQVAE().to(device) model_cond = nn.DataParallel(model_cond).cuda() print('Loading Model...', end='') model_cond.load_state_dict( torch.load('/p300/mem/mem_src/checkpoint/pose_04/vqvae_462.pt')) model_cond.eval()
device = 'cuda' torch.backends.cudnn.benchmark = True transform = transforms.Compose([ transforms.Resize(args.size), transforms.CenterCrop(args.size), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ]) _, loader, _ = iPERLoader(data_root=args.path, batch=args.batch_size, transform=transform).data_load() model = VQVAE_SPADE(embed_dim=128, parser=parser).to(device) model = nn.DataParallel(model).cuda() print('Loading Model...', end='') model.load_state_dict( torch.load('/p300/mem/mem_src/SPADE/checkpoint/as_82/vqvae_244.pt')) model.eval() print('Complete !') optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = None model_cond = poseVQVAE().to(device) model_cond = nn.DataParallel(model_cond).cuda() print('Loading Model...', end='') model_cond.load_state_dict( torch.load('/p300/mem/mem_src/checkpoint/pose_04/vqvae_462.pt'))
device = 'cuda' torch.backends.cudnn.benchmark = True transform = transforms.Compose( [ transforms.Resize(args.size), transforms.CenterCrop(args.size), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ] ) _, loader, _ = iPERLoader(data_root=args.path, batch=args.batch_size, transform=transform).data_load() model = VQVAE_SPADE(embed_dim=128, parser=parser).to(device) model = nn.DataParallel(model).cuda() # print('Loading Model...', end='') # model.load_state_dict(torch.load('/p300/mem/mem_src/SPADE/checkpoint/app_v04/vqvae_089.pt')) # model.eval() # print('Complete !') optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = None model_cond = poseVQVAE().to(device) model_cond = nn.DataParallel(model_cond).cuda() print('Loading Model...', end='') model_cond.load_state_dict(torch.load('/p300/mem/mem_src/checkpoint/pose_04/vqvae_462.pt')) model_cond.eval() print('Complete !')
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu device = 'cuda' torch.backends.cudnn.benchmark = True transform = transforms.Compose([ transforms.Resize(args.size), transforms.CenterCrop(args.size), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ]) loader_train, loader_val, _ = \ iPERLoader(data_root=args.path, batch=args.batch_size, transform=transform).data_load() model = VQVAE_SPADE(embed_dim=128, parser=parser).to(device) model = nn.DataParallel(model).cuda() print('Loading Model...', end='') model.load_state_dict( torch.load('/p300/mem/mem_src/SPADE/checkpoint/as_115/vqvae_014.pt')) model.eval() print('Complete !') # optimizer = optim.Adam(model.parameters(), lr=args.lr) optimizer = build_optimizer(model, lr=args.lr) scheduler = None model_cond = poseVQVAE().to(device) model_cond = nn.DataParallel(model_cond).cuda() print('Loading Model_condition...', end='') model_cond.load_state_dict( torch.load('/p300/mem/mem_src/checkpoint/pose_06_black/vqvae_120.pt'))