コード例 #1
0
ファイル: evaluate_tile.py プロジェクト: bohaohuang/sis
                                                vae_size[1]),
                                    axis=0)

        pred = sess.run([model.z_mean, model.z_sigma],
                        feed_dict={
                            model.inputs['X']: img2encode,
                            model.trainable: False
                        })
        encoded = np.zeros((1, model.latent_num * 2))
        encoded[0, :model.latent_num] = pred[0][0, :]
        encoded[0, model.latent_num:] = pred[1][0, :]

        # compute llh
        llh = np.zeros(5)
        for i in range(5):
            llh[i] = gmm_models[i].score_samples(encoded)[0]
            llh_mask[i].append(llh[i] * np.ones(
                (patch_size[0], patch_size[1], 1)))

# get mask
plt.figure(figsize=(15, 5))
for i in range(5):
    conf_map = uabUtilreader.un_patchify(np.stack(llh_mask[i], axis=0),
                                         tile_dim, patch_size, 0)
    plt.subplot(151 + i)
    plt.imshow(conf_map[:, :, 0])
    plt.axis('off')
plt.tight_layout()
#plt.savefig(os.path.join(img_dir, '{}_{}_{}_gmm_all.png'.format(city_name, city_id, model_name)))
plt.show()
コード例 #2
0
    def run(self,
            train_reader=None,
            valid_reader=None,
            test_reader=None,
            pretrained_model_dir=None,
            layers2load=None,
            isTrain=False,
            img_mean=np.array((0, 0, 0), dtype=np.float32),
            verb_step=100,
            save_epoch=5,
            gpu=None,
            tile_size=(5000, 5000),
            patch_size=(572, 572),
            truth_val=1,
            continue_dir=None,
            load_epoch_num=None,
            fineTune=False,
            valid_iou=False,
            best_model=True):
        if gpu is not None:
            os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
            os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
        if isTrain:
            coord = tf.train.Coordinator()
            with tf.Session(config=self.config) as sess:
                # init model
                init = [
                    tf.global_variables_initializer(),
                    tf.local_variables_initializer()
                ]
                sess.run(init)
                saver = tf.train.Saver(var_list=tf.global_variables(),
                                       max_to_keep=1)
                # load model
                if pretrained_model_dir is not None:
                    if layers2load is not None:
                        self.load_weights(pretrained_model_dir, layers2load)
                    else:
                        if not fineTune:
                            restore_var = [
                                v for v in tf.global_variables() if
                                'resnet_v1' in v.name and not 'Adam' in v.name
                            ]
                            loader = tf.train.Saver(var_list=restore_var)
                            self.load(pretrained_model_dir,
                                      sess,
                                      loader,
                                      epoch=load_epoch_num)
                        else:
                            self.load(pretrained_model_dir,
                                      sess,
                                      saver,
                                      epoch=load_epoch_num)
                threads = tf.train.start_queue_runners(coord=coord, sess=sess)
                try:
                    train_summary_writer = tf.summary.FileWriter(
                        self.ckdir, sess.graph)
                    self.train('X',
                               'Y',
                               self.n_train,
                               sess,
                               train_summary_writer,
                               n_valid=self.n_valid,
                               train_reader=train_reader,
                               valid_reader=valid_reader,
                               image_summary=util_functions.image_summary,
                               img_mean=img_mean,
                               verb_step=verb_step,
                               save_epoch=save_epoch,
                               continue_dir=continue_dir,
                               valid_iou=valid_iou)
                finally:
                    coord.request_stop()
                    coord.join(threads)
                    saver.save(sess,
                               '{}/model.ckpt'.format(self.ckdir),
                               global_step=self.global_step)
        else:
            kernel = _window_2D(patch_size[0] + 182, patch_size[0])

            with tf.Session() as sess:
                init = tf.global_variables_initializer()
                sess.run(init)
                self.load(pretrained_model_dir,
                          sess,
                          epoch=load_epoch_num,
                          best_model=best_model)
                self.model_name = pretrained_model_dir.split('/')[-1]
                result = self.test('X', sess, test_reader)
            n_patch = result.shape[0]
            for patch_cnt in range(n_patch):
                result[patch_cnt, :, :, :] *= kernel
            image_pred = uabUtilreader.un_patchify(result, tile_size,
                                                   patch_size)
            return image_pred