コード例 #1
0
    overrides = {}
    if args.device is not None:
        overrides["trainer"] = {"cuda_device": args.device}
    if args.lazy is not None:
        overrides["dataset_reader"] = {"lazy": args.lazy}
    configs.append(Params(overrides))
    for config_file in args.config:
        configs.append(Params.from_file(config_file))
    configs.append(Params.from_file(args.base_config))
else:
    serialization_dir = args.resume
    configs.append(
        Params.from_file(os.path.join(serialization_dir, "config.json")))

train_params = util.merge_configs(configs)
if "vocabulary" in train_params:
    # Remove this key to make AllenNLP happy
    train_params["vocabulary"].pop("non_padded_namespaces", None)

predict_params = train_params.duplicate()

import_submodules("udify")

try:
    util.cache_vocab(train_params)
    train_model(train_params, serialization_dir, recover=bool(args.resume))
except KeyboardInterrupt:
    logger.warning("KeyboardInterrupt, skipping training")

dev_file = predict_params["validation_data_path"]
コード例 #2
0
ファイル: train.py プロジェクト: cosbi-research/beesl
log_dir_name = args.name
if not log_dir_name:
    file_name = args.dataset_config if args.dataset_config else args.parameters_config
    log_dir_name = os.path.basename(file_name).split(".")[0]

if not args.resume:
    serialization_dir = os.path.join(
        "logs", log_dir_name,
        datetime.datetime.now().strftime("%Y.%m.%d_%H.%M.%S"))

    overrides = {}
    if args.device is not None:
        overrides["trainer"] = {"cuda_device": args.device}
    if args.lazy is not None:
        overrides["dataset_reader"] = {"lazy": args.lazy}
    train_params = util.merge_configs(args.parameters_config,
                                      args.dataset_config, overrides)
#else:
#    serialization_dir = args.resume
#    train_params = Params.from_file(os.path.join(serialization_dir, "config.json"))
#TODO override stuff!

if "vocabulary" in train_params:
    # Remove this key to make AllenNLP happy
    train_params["vocabulary"].pop("non_padded_namespaces", None)

predict_params = train_params.duplicate()

import_submodules("udify")

try:
    util.cache_vocab(train_params)