コード例 #1
0
 def nabla_grad(self, o, a):
     j = Index()
     if a.rank() > 0:
         ii = tuple(indices(a.rank()))
         return as_tensor(a[ii].dx(j), (j,) + ii)
     else:
         return as_tensor(a.dx(j), (j,))
コード例 #2
0
def generic_pseudo_inverse_expr(A):
    """Compute the Penrose-Moore pseudo-inverse of A: (A.T*A)^-1 * A.T."""
    i, j, k = indices(3)
    ATA = as_tensor(A[k, i] * A[k, j], (i, j))
    ATAinv = inverse_expr(ATA)
    q, r, s = indices(3)
    return as_tensor(ATAinv[r, q] * A[s, q], (r, s))
コード例 #3
0
ファイル: compound_expressions.py プロジェクト: knut0815/ufl
def generic_pseudo_inverse_expr(A):
    """Compute the Penrose-Moore pseudo-inverse of A: (A.T*A)^-1 * A.T."""
    i, j, k = indices(3)
    ATA = as_tensor(A[k, i] * A[k, j], (i, j))
    ATAinv = inverse_expr(ATA)
    q, r, s = indices(3)
    return as_tensor(ATAinv[r, q] * A[s, q], (r, s))
コード例 #4
0
def _function_from_ufl_component_tensor(expression: Product, indices: tuple_of(IndexBase)):
    factor_1 = expression.ufl_operands[0]
    factor_2 = expression.ufl_operands[1]
    assert isinstance(factor_1, (Number, ScalarValue)) or isinstance(factor_2, (Number, ScalarValue))
    if isinstance(factor_1, (Number, ScalarValue)):
        factor_2 = as_tensor(factor_2, indices)
    else:  # isinstance(factor_2, (Number, ScalarValue))
        factor_1 = as_tensor(factor_1, indices)
    return _function_from_ufl_product(factor_1, factor_2)
コード例 #5
0
def apply_single_function_pullbacks(r, element):
    """Apply an appropriate pullback to something in physical space

    :arg r: An expression wrapped in ReferenceValue.
    :arg element: The element this expression lives in.
    :returns: a pulled back expression."""
    mapping = element.mapping()
    if r.ufl_shape != element.reference_value_shape():
        error("Expecting reference space expression with shape '%s', got '%s'" % (element.reference_value_shape(), r.ufl_shape))
    if mapping in {"physical", "identity",
                   "contravariant Piola", "covariant Piola",
                   "double contravariant Piola", "double covariant Piola",
                   "L2 Piola"}:
        # Base case in recursion through elements. If the element
        # advertises a mapping we know how to handle, do that
        # directly.
        f = apply_known_single_pullback(r, element)
        if f.ufl_shape != element.value_shape():
            error("Expecting pulled back expression with shape '%s', got '%s'" % (element.value_shape(), f.ufl_shape))
        return f
    elif mapping in {"symmetries", "undefined"}:
        # Need to pull back each unique piece of the reference space thing
        gsh = element.value_shape()
        rsh = r.ufl_shape
        if mapping == "symmetries":
            subelem = element.sub_elements()[0]
            fcm = element.flattened_sub_element_mapping()
            offsets = (product(subelem.reference_value_shape()) * i for i in fcm)
            elements = repeat(subelem)
        else:
            elements = sub_elements_with_mappings(element)
            # Python >= 3.8 has an initial keyword argument to
            # accumulate, but 3.7 does not.
            offsets = chain([0],
                            accumulate(product(e.reference_value_shape())
                                       for e in elements))
        rflat = as_vector([r[idx] for idx in numpy.ndindex(rsh)])
        g_components = []
        # For each unique piece in reference space, apply the appropriate pullback
        for offset, subelem in zip(offsets, elements):
            sub_rsh = subelem.reference_value_shape()
            rm = product(sub_rsh)
            rsub = [rflat[offset + i] for i in range(rm)]
            rsub = as_tensor(numpy.asarray(rsub).reshape(sub_rsh))
            rmapped = apply_single_function_pullbacks(rsub, subelem)
            # Flatten into the pulled back expression for the whole thing
            g_components.extend([rmapped[idx]
                                 for idx in numpy.ndindex(rmapped.ufl_shape)])
        # And reshape appropriately
        f = as_tensor(numpy.asarray(g_components).reshape(gsh))
        if f.ufl_shape != element.value_shape():
            error("Expecting pulled back expression with shape '%s', got '%s'" % (element.value_shape(), f.ufl_shape))
        return f
    else:
        error("Unhandled mapping type '%s'" % mapping)
コード例 #6
0
def apply_known_single_pullback(r, element):
    """Apply pullback with given mapping.

    :arg r: Expression wrapped in ReferenceValue
    :arg element: The element defining the mapping
    """
    # Need to pass in r rather than the physical space thing, because
    # the latter may be a ListTensor or similar, rather than a
    # Coefficient/Argument (in the case of mixed elements, see below
    # in apply_single_function_pullbacks), to which we cannot apply ReferenceValue
    mapping = element.mapping()
    domain = r.ufl_domain()
    if mapping == "physical":
        return r
    elif mapping == "identity":
        return r
    elif mapping == "contravariant Piola":
        J = Jacobian(domain)
        detJ = JacobianDeterminant(J)
        transform = (1.0 / detJ) * J
        # Apply transform "row-wise" to TensorElement(PiolaMapped, ...)
        *k, i, j = indices(len(r.ufl_shape) + 1)
        kj = (*k, j)
        f = as_tensor(transform[i, j] * r[kj], (*k, i))
        return f
    elif mapping == "covariant Piola":
        K = JacobianInverse(domain)
        # Apply transform "row-wise" to TensorElement(PiolaMapped, ...)
        *k, i, j = indices(len(r.ufl_shape) + 1)
        kj = (*k, j)
        f = as_tensor(K[j, i] * r[kj], (*k, i))
        return f
    elif mapping == "L2 Piola":
        detJ = JacobianDeterminant(domain)
        return r / detJ
    elif mapping == "double contravariant Piola":
        J = Jacobian(domain)
        detJ = JacobianDeterminant(J)
        transform = (1.0 / detJ) * J
        # Apply transform "row-wise" to TensorElement(PiolaMapped, ...)
        *k, i, j, m, n = indices(len(r.ufl_shape) + 2)
        kmn = (*k, m, n)
        f = as_tensor((1.0 / detJ)**2 * J[i, m] * r[kmn] * J[j, n], (*k, i, j))
        return f
    elif mapping == "double covariant Piola":
        K = JacobianInverse(domain)
        # Apply transform "row-wise" to TensorElement(PiolaMapped, ...)
        *k, i, j, m, n = indices(len(r.ufl_shape) + 2)
        kmn = (*k, m, n)
        f = as_tensor(K[m, i] * r[kmn] * K[n, j], (*k, i, j))
        return f
    else:
        error("Should never be reached!")
コード例 #7
0
ファイル: exproperators.py プロジェクト: firedrakeproject/ufl
def _as_tensor(self, indices):
    "UFL operator: A^indices := as_tensor(A, indices)."
    if not isinstance(indices, tuple):
        error("Expecting a tuple of Index objects to A^indices := as_tensor(A, indices).")
    if not all(isinstance(i, Index) for i in indices):
        error("Expecting a tuple of Index objects to A^indices := as_tensor(A, indices).")
    return as_tensor(self, indices)
コード例 #8
0
    def indexed(self, o, Ap,
                ii):  # TODO: (Partially) duplicated in nesting rules
        # Propagate zeros
        if isinstance(Ap, Zero):
            return self.independent_operator(o)

        # Untangle as_tensor(C[kk], jj)[ii] -> C[ll] to simplify
        # resulting expression
        if isinstance(Ap, ComponentTensor):
            B, jj = Ap.ufl_operands
            if isinstance(B, Indexed):
                C, kk = B.ufl_operands
                kk = list(kk)
                if all(j in kk for j in jj):
                    rep = dict(zip(jj, ii))
                    Cind = [rep.get(k, k) for k in kk]
                    expr = Indexed(C, MultiIndex(tuple(Cind)))
                    assert expr.ufl_free_indices == o.ufl_free_indices
                    assert expr.ufl_shape == o.ufl_shape
                    return expr

        # Otherwise a more generic approach
        r = len(Ap.ufl_shape) - len(ii)
        if r:
            kk = indices(r)
            op = Indexed(Ap, MultiIndex(ii.indices() + kk))
            op = as_tensor(op, kk)
        else:
            op = Indexed(Ap, ii)
        return op
コード例 #9
0
def _as_tensor(self, indices):
    "UFL operator: A^indices := as_tensor(A, indices)."
    if not isinstance(indices, tuple):
        error("Expecting a tuple of Index objects to A^indices := as_tensor(A, indices).")
    if not all(isinstance(i, Index) for i in indices):
        error("Expecting a tuple of Index objects to A^indices := as_tensor(A, indices).")
    return as_tensor(self, indices)
コード例 #10
0
 def component_tensor(self, o, Ap, ii):
     if isinstance(Ap, Zero):
         op = self.independent_operator(o)
     else:
         Ap, jj = as_scalar(Ap)
         op = as_tensor(Ap, ii.indices() + jj)
     return op
コード例 #11
0
ファイル: apply_derivatives.py プロジェクト: FEniCS/ufl
 def _make_identity(self, sh):
     "Create a higher order identity tensor to represent dv/dv."
     res = None
     if sh == ():
         # Scalar dv/dv is scalar
         return FloatValue(1.0)
     elif len(sh) == 1:
         # Vector v makes dv/dv the identity matrix
         return Identity(sh[0])
     else:
         # TODO: Add a type for this higher order identity?
         # II[i0,i1,i2,j0,j1,j2] = 1 if all((i0==j0, i1==j1, i2==j2)) else 0
         # Tensor v makes dv/dv some kind of higher rank identity tensor
         ind1 = ()
         ind2 = ()
         for d in sh:
             i, j = indices(2)
             dij = Identity(d)[i, j]
             if res is None:
                 res = dij
             else:
                 res *= dij
             ind1 += (i,)
             ind2 += (j,)
         fp = as_tensor(res, ind1 + ind2)
     return fp
コード例 #12
0
 def dot(self, o, a, b):
     ai = indices(len(a.ufl_shape)-1)
     bi = indices(len(b.ufl_shape)-1)
     k = (Index(),)
     # Creates a single IndexSum over a Product
     s = a[ai+k]*b[k+bi]
     return as_tensor(s, ai+bi)
コード例 #13
0
    def indexed(self, o, Ap,
                ii):  # TODO: (Partially) duplicated in generic rules
        # Reuse if untouched
        if Ap is o.ufl_operands[0]:
            return o

        # Untangle as_tensor(C[kk], jj)[ii] -> C[ll] to simplify
        # resulting expression
        if isinstance(Ap, ComponentTensor):
            B, jj = Ap.ufl_operands
            if isinstance(B, Indexed):
                C, kk = B.ufl_operands

                kk = list(kk)
                if all(j in kk for j in jj):
                    Cind = list(kk)
                    for i, j in zip(ii, jj):
                        Cind[kk.index(j)] = i
                    return Indexed(C, MultiIndex(tuple(Cind)))

        # Otherwise a more generic approach
        r = len(Ap.ufl_shape) - len(ii)
        if r:
            kk = indices(r)
            op = Indexed(Ap, MultiIndex(ii.indices() + kk))
            op = as_tensor(op, kk)
        else:
            op = Indexed(Ap, ii)
        return op
コード例 #14
0
 def dot(self, o, a, b):
     ai = indices(a.rank()-1)
     bi = indices(b.rank()-1)
     k  = indices(1)
     # Create an IndexSum over a Product
     s = a[ai+k]*b[k+bi]
     return as_tensor(s, ai+bi)
コード例 #15
0
ファイル: apply_derivatives.py プロジェクト: FEniCS/ufl
    def indexed(self, o, Ap, ii):  # TODO: (Partially) duplicated in nesting rules
        # Propagate zeros
        if isinstance(Ap, Zero):
            return self.independent_operator(o)

        # Untangle as_tensor(C[kk], jj)[ii] -> C[ll] to simplify
        # resulting expression
        if isinstance(Ap, ComponentTensor):
            B, jj = Ap.ufl_operands
            if isinstance(B, Indexed):
                C, kk = B.ufl_operands
                kk = list(kk)
                if all(j in kk for j in jj):
                    Cind = list(kk)
                    for i, j in zip(ii, jj):
                        Cind[kk.index(j)] = i
                    return Indexed(C, MultiIndex(tuple(Cind)))

        # Otherwise a more generic approach
        r = len(Ap.ufl_shape) - len(ii)
        if r:
            kk = indices(r)
            op = Indexed(Ap, MultiIndex(ii.indices() + kk))
            op = as_tensor(op, kk)
        else:
            op = Indexed(Ap, ii)
        return op
コード例 #16
0
 def dot(self, o, a, b):
     ai = indices(len(a.ufl_shape) - 1)
     bi = indices(len(b.ufl_shape) - 1)
     k = (Index(),)
     # Creates a single IndexSum over a Product
     s = a[ai + k] * b[k + bi]
     return as_tensor(s, ai + bi)
コード例 #17
0
ファイル: apply_derivatives.py プロジェクト: FEniCS/ufl
 def component_tensor(self, o, Ap, ii):
     if isinstance(Ap, Zero):
         op = self.independent_operator(o)
     else:
         Ap, jj = as_scalar(Ap)
         op = as_tensor(Ap, ii.indices() + jj)
     return op
コード例 #18
0
 def _make_identity(self, sh):
     "Create a higher order identity tensor to represent dv/dv."
     res = None
     if sh == ():
         # Scalar dv/dv is scalar
         return FloatValue(1.0)
     elif len(sh) == 1:
         # Vector v makes dv/dv the identity matrix
         return Identity(sh[0])
     else:
         # TODO: Add a type for this higher order identity?
         # II[i0,i1,i2,j0,j1,j2] = 1 if all((i0==j0, i1==j1, i2==j2)) else 0
         # Tensor v makes dv/dv some kind of higher rank identity tensor
         ind1 = ()
         ind2 = ()
         for d in sh:
             i, j = indices(2)
             dij = Identity(d)[i, j]
             if res is None:
                 res = dij
             else:
                 res *= dij
             ind1 += (i, )
             ind2 += (j, )
         fp = as_tensor(res, ind1 + ind2)
     return fp
コード例 #19
0
 def nabla_grad(self, o, a):
     sh = a.ufl_shape
     if sh == ():
         return Grad(a)
     else:
         j = Index()
         ii = tuple(indices(len(sh)))
         return as_tensor(a[ii].dx(j), (j,) + ii)
コード例 #20
0
 def nabla_grad(self, o, a):
     sh = a.ufl_shape
     if sh == ():
         return Grad(a)
     else:
         j = Index()
         ii = tuple(indices(len(sh)))
         return as_tensor(a[ii].dx(j), (j,) + ii)
コード例 #21
0
ファイル: exproperators.py プロジェクト: mrambausek/ufl
def _getitem(self, component):

    # Treat component consistently as tuple below
    if not isinstance(component, tuple):
        component = (component, )

    shape = self.ufl_shape

    # Analyse slices (:) and Ellipsis (...)
    all_indices, slice_indices, repeated_indices = create_slice_indices(
        component, shape, self.ufl_free_indices)

    # Check that we have the right number of indices for a tensor with
    # this shape
    if len(shape) != len(all_indices):
        error(
            "Invalid number of indices {0} for expression of rank {1}.".format(
                len(all_indices), len(shape)))

    # Special case for simplifying foo[...] => foo, foo[:] => foo or
    # similar
    if len(slice_indices) == len(all_indices):
        return self

    # Special case for simplifying as_tensor(ai,(i,))[i] => ai
    if isinstance(self, ComponentTensor):
        if all_indices == self.indices().indices():
            return self.ufl_operands[0]

    # Apply all indices to index self, yielding a scalar valued
    # expression
    mi = MultiIndex(all_indices)
    a = Indexed(self, mi)

    # TODO: I think applying as_tensor after index sums results in
    # cleaner expression graphs.

    # If the Ellipsis or any slices were found, wrap as tensor valued
    # with the slice indices created at the top here
    if slice_indices:
        a = as_tensor(a, slice_indices)

    # If any repeated indices were found, apply implicit summation
    # over those
    for i in repeated_indices:
        mi = MultiIndex((i, ))
        a = IndexSum(a, mi)

    # Check for zero (last so we can get indices etc from a, could
    # possibly be done faster by checking early instead)
    if isinstance(self, Zero):
        shape = a.ufl_shape
        fi = a.ufl_free_indices
        fid = a.ufl_index_dimensions
        a = Zero(shape, fi, fid)

    return a
コード例 #22
0
ファイル: exproperators.py プロジェクト: firedrakeproject/ufl
def _div(self, o):
    if not isinstance(o, _valid_types):
        return NotImplemented
    sh = self.ufl_shape
    if sh:
        ii = indices(len(sh))
        d = Division(self[ii], o)
        return as_tensor(d, ii)
    return Division(self, o)
コード例 #23
0
ファイル: apply_geometry_lowering.py プロジェクト: FEniCS/ufl
    def facet_jacobian(self, o):
        if self._preserve_types[o._ufl_typecode_]:
            return o

        domain = o.ufl_domain()
        J = self.jacobian(Jacobian(domain))
        RFJ = CellFacetJacobian(domain)
        i, j, k = indices(3)
        return as_tensor(J[i, k]*RFJ[k, j], (i, j))
コード例 #24
0
    def facet_jacobian(self, o):
        if self._preserve_types[o._ufl_typecode_]:
            return o

        domain = o.ufl_domain()
        J = self.jacobian(Jacobian(domain))
        RFJ = CellFacetJacobian(domain)
        i, j, k = indices(3)
        return as_tensor(J[i, k] * RFJ[k, j], (i, j))
コード例 #25
0
ファイル: exproperators.py プロジェクト: mrambausek/ufl
def _div(self, o):
    if not isinstance(o, _valid_types):
        return NotImplemented
    sh = self.ufl_shape
    if sh:
        ii = indices(len(sh))
        d = Division(self[ii], o)
        return as_tensor(d, ii)
    return Division(self, o)
コード例 #26
0
ファイル: compound_expressions.py プロジェクト: knut0815/ufl
def pseudo_inverse_expr(A):
    """Compute the Penrose-Moore pseudo-inverse of A: (A.T*A)^-1 * A.T."""
    m, n = A.ufl_shape
    if n == 1:
        # Simpler special case for 1d
        i, j, k = indices(3)
        return as_tensor(A[i, j], (j, i)) / (A[k, 0] * A[k, 0])
    else:
        # Generic formulation
        return generic_pseudo_inverse_expr(A)
コード例 #27
0
def pseudo_inverse_expr(A):
    """Compute the Penrose-Moore pseudo-inverse of A: (A.T*A)^-1 * A.T."""
    m, n = A.ufl_shape
    if n == 1:
        # Simpler special case for 1d
        i, j, k = indices(3)
        return as_tensor(A[i, j], (j, i)) / (A[k, 0] * A[k, 0])
    else:
        # Generic formulation
        return generic_pseudo_inverse_expr(A)
コード例 #28
0
ファイル: apply_derivatives.py プロジェクト: FEniCS/ufl
 def jacobian_inverse(self, o):
     # grad(K) == K_ji rgrad(K)_rj
     if is_cellwise_constant(o):
         return self.independent_terminal(o)
     if not o._ufl_is_terminal_:
         error("ReferenceValue can only wrap a terminal")
     r = indices(len(o.ufl_shape))
     i, j = indices(2)
     Do = as_tensor(o[j, i]*ReferenceGrad(o)[r + (j,)], r + (i,))
     return Do
コード例 #29
0
 def jacobian_inverse(self, o):
     # grad(K) == K_ji rgrad(K)_rj
     if is_cellwise_constant(o):
         return self.independent_terminal(o)
     if not o._ufl_is_terminal_:
         error("ReferenceValue can only wrap a terminal")
     r = indices(len(o.ufl_shape))
     i, j = indices(2)
     Do = as_tensor(o[j, i] * ReferenceGrad(o)[r + (j, )], r + (i, ))
     return Do
コード例 #30
0
ファイル: apply_derivatives.py プロジェクト: FEniCS/ufl
 def product(self, o, da, db):
     # Even though arguments to o are scalar, da and db may be
     # tensor valued
     a, b = o.ufl_operands
     (da, db), ii = as_scalars(da, db)
     pa = Product(da, b)
     pb = Product(a, db)
     s = Sum(pa, pb)
     if ii:
         s = as_tensor(s, ii)
     return s
コード例 #31
0
def elem_op(op, *args):
    "UFL operator: Take the elementwise application of operator op on scalar values from one or more tensor arguments."
    args = map(as_ufl, args)
    sh = args[0].shape()
    ufl_assert(all(sh == x.shape() for x in args),
               "Cannot take elementwise operation with different shapes.")
    if sh == ():
        return op(*args)
    def op_ind(ind, *args):
        return op(*[x[ind] for x in args])
    return as_tensor(elem_op_items(op_ind, (), *args))
コード例 #32
0
ファイル: exproperators.py プロジェクト: firedrakeproject/ufl
def _getitem(self, component):

    # Treat component consistently as tuple below
    if not isinstance(component, tuple):
        component = (component,)

    shape = self.ufl_shape

    # Analyse slices (:) and Ellipsis (...)
    all_indices, slice_indices, repeated_indices = create_slice_indices(component, shape, self.ufl_free_indices)

    # Check that we have the right number of indices for a tensor with
    # this shape
    if len(shape) != len(all_indices):
        error("Invalid number of indices {0} for expression of rank {1}.".format(len(all_indices), len(shape)))

    # Special case for simplifying foo[...] => foo, foo[:] => foo or
    # similar
    if len(slice_indices) == len(all_indices):
        return self

    # Special case for simplifying as_tensor(ai,(i,))[i] => ai
    if isinstance(self, ComponentTensor):
        if all_indices == self.indices().indices():
            return self.ufl_operands[0]

    # Apply all indices to index self, yielding a scalar valued
    # expression
    mi = MultiIndex(all_indices)
    a = Indexed(self, mi)

    # TODO: I think applying as_tensor after index sums results in
    # cleaner expression graphs.

    # If the Ellipsis or any slices were found, wrap as tensor valued
    # with the slice indices created at the top here
    if slice_indices:
        a = as_tensor(a, slice_indices)

    # If any repeated indices were found, apply implicit summation
    # over those
    for i in repeated_indices:
        mi = MultiIndex((i,))
        a = IndexSum(a, mi)

    # Check for zero (last so we can get indices etc from a, could
    # possibly be done faster by checking early instead)
    if isinstance(self, Zero):
        shape = a.ufl_shape
        fi = a.ufl_free_indices
        fid = a.ufl_index_dimensions
        a = Zero(shape, fi, fid)

    return a
コード例 #33
0
ファイル: apply_derivatives.py プロジェクト: FEniCS/ufl
 def reference_value(self, o):
     # grad(o) == grad(rv(f)) -> K_ji*rgrad(rv(f))_rj
     f = o.ufl_operands[0]
     if not f._ufl_is_terminal_:
         error("ReferenceValue can only wrap a terminal")
     domain = f.ufl_domain()
     K = JacobianInverse(domain)
     r = indices(len(o.ufl_shape))
     i, j = indices(2)
     Do = as_tensor(K[j, i]*ReferenceGrad(o)[r + (j,)], r + (i,))
     return Do
コード例 #34
0
 def reference_value(self, o):
     # grad(o) == grad(rv(f)) -> K_ji*rgrad(rv(f))_rj
     f = o.ufl_operands[0]
     if not f._ufl_is_terminal_:
         error("ReferenceValue can only wrap a terminal")
     domain = f.ufl_domain()
     K = JacobianInverse(domain)
     r = indices(len(o.ufl_shape))
     i, j = indices(2)
     Do = as_tensor(K[j, i] * ReferenceGrad(o)[r + (j, )], r + (i, ))
     return Do
コード例 #35
0
 def product(self, o, da, db):
     # Even though arguments to o are scalar, da and db may be
     # tensor valued
     a, b = o.ufl_operands
     (da, db), ii = as_scalars(da, db)
     pa = Product(da, b)
     pb = Product(a, db)
     s = Sum(pa, pb)
     if ii:
         s = as_tensor(s, ii)
     return s
コード例 #36
0
ファイル: compound_expressions.py プロジェクト: knut0815/ufl
def inverse_expr(A):
    "Compute the inverse of A."
    sh = A.ufl_shape
    if sh == ():
        return 1.0 / A
    elif sh[0] == sh[1]:
        if sh[0] == 1:
            return as_tensor(((1.0 / A[0, 0],),))
        else:
            return adj_expr(A) / determinant_expr(A)
    else:
        return pseudo_inverse_expr(A)
コード例 #37
0
    def cell_coordinate(self, o):
        "Compute from physical coordinates if they are known, using the appropriate mappings."
        if self._preserve_types[o._ufl_typecode_]:
            return o

        domain = o.ufl_domain()
        K = self.jacobian_inverse(JacobianInverse(domain))
        x = self.spatial_coordinate(SpatialCoordinate(domain))
        x0 = CellOrigin(domain)
        i, j = indices(2)
        X = as_tensor(K[i, j] * (x[j] - x0[j]), (i, ))
        return X
コード例 #38
0
ファイル: apply_derivatives.py プロジェクト: unifem/UFL-Plus
 def reference_grad(self, o):
     # grad(o) == grad(rgrad(rv(f))) -> K_ji*rgrad(rgrad(rv(f)))_rj
     f = o.ufl_operands[0]
     valid_operand = f._ufl_is_in_reference_frame_ or isinstance(f, (JacobianInverse, SpatialCoordinate))
     if not valid_operand:
         error("ReferenceGrad can only wrap a reference frame type!")
     domain = f.ufl_domain()
     K = JacobianInverse(domain)
     r = indices(len(o.ufl_shape))
     i, j = indices(2)
     Do = as_tensor(K[j, i]*ReferenceGrad(o)[r + (j,)], r + (i,))
     return Do
コード例 #39
0
 def compute_gprimeterm(ngrads, vval, vcomp, wshape, wcomp):
     # Apply gradients directly to argument vval,
     # and get the right indexed scalar component(s)
     kk = indices(ngrads)
     Dvkk = apply_grads(vval)[vcomp+kk]
     # Place scalar component(s) Dvkk into the right tensor positions
     if wshape:
         Ejj, jj = unit_indexed_tensor(wshape, wcomp)
     else:
         Ejj, jj = 1, ()
     gprimeterm = as_tensor(Ejj*Dvkk, jj+kk)
     return gprimeterm
コード例 #40
0
ファイル: apply_geometry_lowering.py プロジェクト: FEniCS/ufl
    def cell_coordinate(self, o):
        "Compute from physical coordinates if they are known, using the appropriate mappings."
        if self._preserve_types[o._ufl_typecode_]:
            return o

        domain = o.ufl_domain()
        K = self.jacobian_inverse(JacobianInverse(domain))
        x = self.spatial_coordinate(SpatialCoordinate(domain))
        x0 = CellOrigin(domain)
        i, j = indices(2)
        X = as_tensor(K[i, j] * (x[j] - x0[j]), (i,))
        return X
コード例 #41
0
def inverse_expr(A):
    "Compute the inverse of A."
    sh = A.ufl_shape
    if sh == ():
        return 1.0 / A
    elif sh[0] == sh[1]:
        if sh[0] == 1:
            return as_tensor(((1.0 / A[0, 0],),))
        else:
            return adj_expr(A) / determinant_expr(A)
    else:
        return pseudo_inverse_expr(A)
コード例 #42
0
 def compute_gprimeterm(ngrads, vval, vcomp, wshape, wcomp):
     # Apply gradients directly to argument vval,
     # and get the right indexed scalar component(s)
     kk = indices(ngrads)
     Dvkk = apply_grads(vval)[vcomp + kk]
     # Place scalar component(s) Dvkk into the right tensor positions
     if wshape:
         Ejj, jj = unit_indexed_tensor(wshape, wcomp)
     else:
         Ejj, jj = 1, ()
     gprimeterm = as_tensor(Ejj * Dvkk, jj + kk)
     return gprimeterm
コード例 #43
0
ファイル: apply_derivatives.py プロジェクト: FEniCS/ufl
 def reference_grad(self, o):
     # grad(o) == grad(rgrad(rv(f))) -> K_ji*rgrad(rgrad(rv(f)))_rj
     f = o.ufl_operands[0]
     valid_operand = f._ufl_is_in_reference_frame_ or isinstance(f, (JacobianInverse, SpatialCoordinate))
     if not valid_operand:
         error("ReferenceGrad can only wrap a reference frame type!")
     domain = f.ufl_domain()
     K = JacobianInverse(domain)
     r = indices(len(o.ufl_shape))
     i, j = indices(2)
     Do = as_tensor(K[j, i]*ReferenceGrad(o)[r + (j,)], r + (i,))
     return Do
コード例 #44
0
def elem_op(op, *args):
    "UFL operator: Take the elementwise application of operator *op* on scalar values from one or more tensor arguments."
    args = [as_ufl(arg) for arg in args]
    sh = args[0].ufl_shape
    if not all(sh == x.ufl_shape for x in args):
        error("Cannot take elementwise operation with different shapes.")

    if sh == ():
        return op(*args)

    def op_ind(ind, *args):
        return op(*[x[ind] for x in args])
    return as_tensor(elem_op_items(op_ind, (), *args))
コード例 #45
0
ファイル: operators.py プロジェクト: firedrakeproject/ufl
def elem_op(op, *args):
    "UFL operator: Take the elementwise application of operator *op* on scalar values from one or more tensor arguments."
    args = [as_ufl(arg) for arg in args]
    sh = args[0].ufl_shape
    if not all(sh == x.ufl_shape for x in args):
        error("Cannot take elementwise operation with different shapes.")

    if sh == ():
        return op(*args)

    def op_ind(ind, *args):
        return op(*[x[ind] for x in args])
    return as_tensor(elem_op_items(op_ind, (), *args))
コード例 #46
0
def elem_op(op, *args):
    "UFL operator: Take the elementwise application of operator op on scalar values from one or more tensor arguments."
    args = map(as_ufl, args)
    sh = args[0].shape()
    ufl_assert(all(sh == x.shape() for x in args),
               "Cannot take elementwise operation with different shapes.")
    if sh == ():
        return op(*args)

    def op_ind(ind, *args):
        return op(*[x[ind] for x in args])

    return as_tensor(elem_op_items(op_ind, (), *args))
コード例 #47
0
 def altenative_dot(self, o, a, b):  # TODO: Test this
     ash = a.ufl_shape
     bsh = b.ufl_shape
     ai = indices(len(ash) - 1)
     bi = indices(len(bsh) - 1)
     # Simplification for tensors where the dot-sum dimension has
     # length 1
     if ash[-1] == 1:
         k = (FixedIndex(0),)
     else:
         k = (Index(),)
     # Potentially creates a single IndexSum over a Product
     s = a[ai + k] * b[k + bi]
     return as_tensor(s, ai + bi)
コード例 #48
0
 def altenative_dot(self, o, a, b):  # TODO: Test this
     ash = a.ufl_shape
     bsh = b.ufl_shape
     ai = indices(len(ash) - 1)
     bi = indices(len(bsh) - 1)
     # Simplification for tensors where the dot-sum dimension has
     # length 1
     if ash[-1] == 1:
         k = (FixedIndex(0),)
     else:
         k = (Index(),)
     # Potentially creates a single IndexSum over a Product
     s = a[ai+k]*b[k+bi]
     return as_tensor(s, ai+bi)
コード例 #49
0
    def coefficient(self, o):
        # Define dw/dw := d/ds [w + s v] = v

        debug("In CoefficientAD.coefficient:")
        debug("o = %s" % o)
        debug("self._w = %s" % self._w)
        debug("self._v = %s" % self._v)

        # Find o among w
        for (w, v) in izip(self._w, self._v):
            if o == w:
                return (w, v)

        # If o is not among coefficient derivatives, return do/dw=0
        oprimesum = Zero(o.shape())
        oprimes = self._cd._data.get(o)
        if oprimes is None:
            if self._cd._data:
                # TODO: Make it possible to silence this message in particular?
                #       It may be good to have for debugging...
                warning("Assuming d{%s}/d{%s} = 0." % (o, self._w))
        else:
            # Make sure we have a tuple to match the self._v tuple
            if not isinstance(oprimes, tuple):
                oprimes = (oprimes, )
                ufl_assert(len(oprimes) == len(self._v), "Got a tuple of arguments, "+\
                               "expecting a matching tuple of coefficient derivatives.")

            # Compute do/dw_j = do/dw_h : v.
            # Since we may actually have a tuple of oprimes and vs in a
            # 'mixed' space, sum over them all to get the complete inner
            # product. Using indices to define a non-compound inner product.
            for (oprime, v) in izip(oprimes, self._v):
                so, oi = as_scalar(oprime)
                rv = len(v.shape())
                oi1 = oi[:-rv]
                oi2 = oi[-rv:]
                prod = so * v[oi2]
                if oi1:
                    oprimesum += as_tensor(prod, oi1)
                else:
                    oprimesum += prod

        # Example:
        # (f : g) -> (dfdu : v) : g + ditto
        # shape(f) == shape(g) == shape(dfdu : v)
        # shape(dfdu) == shape(f) + shape(v)

        return (o, oprimesum)
コード例 #50
0
    def coefficient(self, o):
        # Define dw/dw := d/ds [w + s v] = v

        debug("In CoefficientAD.coefficient:")
        debug("o = %s" % o)
        debug("self._w = %s" % self._w)
        debug("self._v = %s" % self._v)

        # Find o among w
        for (w, v) in izip(self._w, self._v):
            if o == w:
                return (w, v)

        # If o is not among coefficient derivatives, return do/dw=0
        oprimesum = Zero(o.shape())
        oprimes = self._cd._data.get(o)
        if oprimes is None:
            if self._cd._data:
                # TODO: Make it possible to silence this message in particular?
                #       It may be good to have for debugging...
                warning("Assuming d{%s}/d{%s} = 0." % (o, self._w))
        else:
            # Make sure we have a tuple to match the self._v tuple
            if not isinstance(oprimes, tuple):
                oprimes = (oprimes,)
                ufl_assert(len(oprimes) == len(self._v), "Got a tuple of arguments, "+\
                               "expecting a matching tuple of coefficient derivatives.")

            # Compute do/dw_j = do/dw_h : v.
            # Since we may actually have a tuple of oprimes and vs in a
            # 'mixed' space, sum over them all to get the complete inner
            # product. Using indices to define a non-compound inner product.
            for (oprime, v) in izip(oprimes, self._v):
                so, oi = as_scalar(oprime)
                rv = len(v.shape())
                oi1 = oi[:-rv]
                oi2 = oi[-rv:]
                prod = so*v[oi2]
                if oi1:
                    oprimesum += as_tensor(prod, oi1)
                else:
                    oprimesum += prod

        # Example:
        # (f : g) -> (dfdu : v) : g + ditto
        # shape(f) == shape(g) == shape(dfdu : v)
        # shape(dfdu) == shape(f) + shape(v)

        return (o, oprimesum)
コード例 #51
0
    def reference_value(self, o):
        # grad(o) == grad(rv(f)) -> K_ji*rgrad(rv(f))_rj
        f = o.ufl_operands[0]
        if f.ufl_element().mapping() == "physical":
            # TODO: Do we need to be more careful for immersed things?
            return ReferenceGrad(o)

        if not f._ufl_is_terminal_:
            error("ReferenceValue can only wrap a terminal")
        domain = f.ufl_domain()
        K = JacobianInverse(domain)
        r = indices(len(o.ufl_shape))
        i, j = indices(2)
        Do = as_tensor(K[j, i] * ReferenceGrad(o)[r + (j, )], r + (i, ))
        return Do
コード例 #52
0
    def indexed(self, o):
        A, jj = o.operands()
        A2, Ap = self.visit(A)
        o = self.reuse_if_possible(o, A2, jj)

        if isinstance(Ap, Zero):
            op = self._make_zero_diff(o)
        else:
            r = Ap.rank() - len(jj)
            if r:
                ii = indices(r)
                op = Indexed(Ap, jj._indices + ii)
                op = as_tensor(op, ii)
            else:
                op = Indexed(Ap, jj)
        return (o, op)
コード例 #53
0
    def indexed(self, o):
        A, jj = o.operands()
        A2, Ap = self.visit(A)
        o = self.reuse_if_possible(o, A2, jj)

        if isinstance(Ap, Zero):
            op = self._make_zero_diff(o)
        else:
            r = Ap.rank() - len(jj)
            if r:
                ii = indices(r)
                op = Indexed(Ap, jj._indices + ii)
                op = as_tensor(op, ii)
            else:
                op = Indexed(Ap, jj)
        return (o, op)
コード例 #54
0
    def _make_ones_diff(self, o):
        ufl_assert(o.shape() == self._var_shape,
                   "This is only used by VariableDerivative, yes?")
        # Define a scalar value with the right indices
        # (kind of cumbersome this... any simpler way?)

        sh = o.shape()
        fi = o.free_indices()
        idims = dict(o.index_dimensions())

        if self._var_free_indices:
            # Currently assuming only one free variable index
            i, = self._var_free_indices
            if i not in idims:
                fi = unique_indices(fi + (i, ))
                idims[i] = self._var_index_dimensions[i]

        # Create a 1 with index annotations
        one = IntValue(1, (), fi, idims)

        res = None
        if sh == ():
            return one
        elif len(sh) == 1:
            # FIXME: If sh == (1,), I think this will get the wrong shape?
            # I think we should make sure sh=(1,...,1) is always converted to () early.
            fp = Identity(sh[0])
        else:
            ind1 = ()
            ind2 = ()
            for d in sh:
                i, j = indices(2)
                dij = Identity(d)[i, j]
                if res is None:
                    res = dij
                else:
                    res *= dij
                ind1 += (i, )
                ind2 += (j, )
            fp = as_tensor(res, ind1 + ind2)

        # Apply index annotations
        if fi:
            fp *= one

        return fp
コード例 #55
0
    def coefficient(self, o):
        # Define dw/dw := d/ds [w + s v] = v

        # Return corresponding argument if we can find o among w
        do = self._w2v.get(o)
        if do is not None:
            return do

        # Look for o among coefficient derivatives
        dos = self._cd.get(o)
        if dos is None:
            # If o is not among coefficient derivatives, return
            # do/dw=0
            do = Zero(o.ufl_shape)
            return do
        else:
            # Compute do/dw_j = do/dw_h : v.
            # Since we may actually have a tuple of oprimes and vs in a
            # 'mixed' space, sum over them all to get the complete inner
            # product. Using indices to define a non-compound inner product.

            # Example:
            # (f:g) -> (dfdu:v):g + f:(dgdu:v)
            # shape(dfdu) == shape(f) + shape(v)
            # shape(f) == shape(g) == shape(dfdu : v)

            # Make sure we have a tuple to match the self._v tuple
            if not isinstance(dos, tuple):
                dos = (dos, )
            if len(dos) != len(self._v):
                error(
                    "Got a tuple of arguments, expecting a matching tuple of coefficient derivatives."
                )
            dosum = Zero(o.ufl_shape)
            for do, v in zip(dos, self._v):
                so, oi = as_scalar(do)
                rv = len(v.ufl_shape)
                oi1 = oi[:-rv]
                oi2 = oi[-rv:]
                prod = so * v[oi2]
                if oi1:
                    dosum += as_tensor(prod, oi1)
                else:
                    dosum += prod
            return dosum
コード例 #56
0
    def _make_ones_diff(self, o):
        ufl_assert(o.shape() == self._var_shape, "This is only used by VariableDerivative, yes?")
        # Define a scalar value with the right indices
        # (kind of cumbersome this... any simpler way?)

        sh = o.shape()
        fi = o.free_indices()
        idims = dict(o.index_dimensions())

        if self._var_free_indices:
            # Currently assuming only one free variable index
            i, = self._var_free_indices
            if i not in idims:
                fi = unique_indices(fi + (i,))
                idims[i] = self._var_index_dimensions[i]

        # Create a 1 with index annotations
        one = IntValue(1, (), fi, idims)

        res = None
        if sh == ():
            return one
        elif len(sh) == 1:
            # FIXME: If sh == (1,), I think this will get the wrong shape?
            # I think we should make sure sh=(1,...,1) is always converted to () early.
            fp = Identity(sh[0])
        else:
            ind1 = ()
            ind2 = ()
            for d in sh:
                i, j = indices(2)
                dij = Identity(d)[i, j]
                if res is None:
                    res = dij
                else:
                    res *= dij
                ind1 += (i,)
                ind2 += (j,)
            fp = as_tensor(res, ind1 + ind2)

        # Apply index annotations
        if fi:
            fp *= one

        return fp
コード例 #57
0
 def product(self, o, *ops):
     # Start with a zero with the right shape and indices
     fp = self._make_zero_diff(o)
     # Get operands and their derivatives
     ops2, dops2 = unzip(ops)
     o = self.reuse_if_possible(o, *ops2)
     for i in xrange(len(ops)):
         # Get scalar representation of differentiated value of operand i
         dop = dops2[i]
         dop, ii = as_scalar(dop)
         # Replace operand i with its differentiated value in product
         fpoperands = ops2[:i] + [dop] + ops2[i+1:]
         p = Product(*fpoperands)
         # Wrap product in tensor again
         if ii:
             p = as_tensor(p, ii)
         # Accumulate terms
         fp += p
     return (o, fp)
コード例 #58
0
ファイル: apply_derivatives.py プロジェクト: FEniCS/ufl
    def coefficient(self, o):
        # Define dw/dw := d/ds [w + s v] = v

        # Return corresponding argument if we can find o among w
        do = self._w2v.get(o)
        if do is not None:
            return do

        # Look for o among coefficient derivatives
        dos = self._cd.get(o)
        if dos is None:
            # If o is not among coefficient derivatives, return
            # do/dw=0
            do = Zero(o.ufl_shape)
            return do
        else:
            # Compute do/dw_j = do/dw_h : v.
            # Since we may actually have a tuple of oprimes and vs in a
            # 'mixed' space, sum over them all to get the complete inner
            # product. Using indices to define a non-compound inner product.

            # Example:
            # (f:g) -> (dfdu:v):g + f:(dgdu:v)
            # shape(dfdu) == shape(f) + shape(v)
            # shape(f) == shape(g) == shape(dfdu : v)

            # Make sure we have a tuple to match the self._v tuple
            if not isinstance(dos, tuple):
                dos = (dos,)
            if len(dos) != len(self._v):
                error("Got a tuple of arguments, expecting a matching tuple of coefficient derivatives.")
            dosum = Zero(o.ufl_shape)
            for do, v in zip(dos, self._v):
                so, oi = as_scalar(do)
                rv = len(v.ufl_shape)
                oi1 = oi[:-rv]
                oi2 = oi[-rv:]
                prod = so*v[oi2]
                if oi1:
                    dosum += as_tensor(prod, oi1)
                else:
                    dosum += prod
            return dosum
コード例 #59
0
def contraction(a, a_axes, b, b_axes):
    "UFL operator: Take the contraction of a and b over given axes."
    ai, bi = a_axes, b_axes
    ufl_assert(len(ai) == len(bi), "Contraction must be over the same number of axes.")
    ash = a.shape()
    bsh = b.shape()
    aii = indices(a.rank())
    bii = indices(b.rank())
    cii = indices(len(ai))
    shape = [None]*len(ai)
    for i,j in enumerate(ai):
        aii[j] = cii[i]
        shape[i] = ash[j]
    for i,j in enumerate(bi):
        bii[j] = cii[i]
        ufl_assert(shape[i] == bsh[j], "Shape mismatch in contraction.")
    s = a[aii]*b[bii]
    cii = set(cii)
    ii = tuple(i for i in (aii + bii) if not i in cii)
    return as_tensor(s, ii)
コード例 #60
0
    def division(self, o, a, b):
        f, fp = a
        g, gp = b
        o = self.reuse_if_possible(o, f, g)

        ufl_assert(is_ufl_scalar(f), "Not expecting nonscalar nominator")
        ufl_assert(is_true_ufl_scalar(g), "Not expecting nonscalar denominator")

        #do_df = 1/g
        #do_dg = -h/g
        #op = do_df*fp + do_df*gp
        #op = (fp - o*gp) / g

        # Get o and gp as scalars, multiply, then wrap as a tensor again
        so, oi = as_scalar(o)
        sgp, gi = as_scalar(gp)
        o_gp = so*sgp
        if oi or gi:
            o_gp = as_tensor(o_gp, oi + gi)
        op = (fp - o_gp) / g

        return (o, op)