コード例 #1
0
    def inFootprint(self, pixels, nside=None):
        """
        Open each valid filename for the set of pixels and determine the set 
        of subpixels with valid data.
        """
        if np.isscalar(pixels): pixels = np.array([pixels])
        if nside is None: nside = self.nside_likelihood

        inside = np.zeros(len(pixels), dtype='bool')
        if not self.nside_catalog:
            catalog_pix = [0]
        else:
            catalog_pix = superpixel(pixels, nside, self.nside_catalog)
            catalog_pix = np.intersect1d(catalog_pix, self.catalog_pixels)

        for filenames in self.filenames[catalog_pix]:
            # ADW: Need to replace with healpix functions...
            #logger.debug("Loading %s"%filenames['mask_1'])
            #subpix_1,val_1 = ugali.utils.skymap.readSparseHealpixMap(filenames['mask_1'],'MAGLIM',construct_map=False)
            _n, subpix_1, val_1 = read_partial_map(filenames['mask_1'],
                                                   'MAGLIM',
                                                   fullsky=False)
            #logger.debug("Loading %s"%filenames['mask_2'])
            #subpix_2,val_2 = ugali.utils.skymap.readSparseHealpixMap(filenames['mask_2'],'MAGLIM',construct_map=False)
            _n, subpix_2, val_2 = read_partial_map(filenames['mask_2'],
                                                   'MAGLIM',
                                                   fullsky=False)
            subpix = np.intersect1d(subpix_1, subpix_2)
            superpix = np.unique(superpixel(subpix, self.nside_pixel, nside))
            inside |= np.in1d(pixels, superpix)

        return inside
コード例 #2
0
ファイル: skymap.py プロジェクト: DarkEnergySurvey/ugali
def inFootprint(config, pixels, nside=None):
    """
    Open each valid filename for the set of pixels and determine the set 
    of subpixels with valid data.
    """
    config = Config(config)
    nside_catalog    = config['coords']['nside_catalog']
    nside_likelihood = config['coords']['nside_likelihood']
    nside_pixel      = config['coords']['nside_pixel']

    if np.isscalar(pixels): pixels = np.array([pixels])
    if nside is None: nside = nside_likelihood

    filenames = config.getFilenames()
    catalog_pixels = filenames['pix'].compressed()

    inside = np.zeros(len(pixels), dtype=bool)
    if not nside_catalog:
        catalog_pix = [0]
    else:
        catalog_pix = superpixel(pixels,nside,nside_catalog)
        catalog_pix = np.intersect1d(catalog_pix,catalog_pixels)

    for fnames in filenames[catalog_pix]:
        logger.debug("Loading %s"%filenames['mask_1'])
        #subpix_1,val_1 = ugali.utils.skymap.readSparseHealpixMap(fnames['mask_1'],'MAGLIM',construct_map=False)
        _nside,subpix_1,val_1 = ugali.utils.healpix.read_partial_map(fnames['mask_1'],'MAGLIM',fullsky=False)
        logger.debug("Loading %s"%fnames['mask_2'])
        #subpix_2,val_2 = ugali.utils.skymap.readSparseHealpixMap(fnames['mask_2'],'MAGLIM',construct_map=False)
        _nside,subpix_2,val_2 = ugali.utils.healpix.read_partial_map(fnames['mask_2'],'MAGLIM',fullsky=False)
        subpix = np.intersect1d(subpix_1,subpix_2)
        superpix = np.unique(superpixel(subpix,nside_pixel,nside))
        inside |= np.in1d(pixels, superpix)
        
    return inside
コード例 #3
0
ファイル: skymap.py プロジェクト: eonadler/ugali
def inFootprint(config, pixels, nside=None):
    """
    Open each valid filename for the set of pixels and determine the set 
    of subpixels with valid data.
    """
    config = Config(config)
    nside_catalog = config['coords']['nside_catalog']
    nside_likelihood = config['coords']['nside_likelihood']
    nside_pixel = config['coords']['nside_pixel']

    if numpy.isscalar(pixels): pixels = numpy.array([pixels])
    if nside is None: nside = nside_likelihood

    filenames = config.getFilenames()
    catalog_pixels = filenames['pix'].compressed()

    inside = numpy.zeros(len(pixels), dtype=bool)
    if not nside_catalog:
        catalog_pix = [0]
    else:
        catalog_pix = superpixel(pixels, nside, nside_catalog)
        catalog_pix = numpy.intersect1d(catalog_pix, catalog_pixels)

    for fnames in filenames[catalog_pix]:
        logger.debug("Loading %s" % filenames['mask_1'])
        subpix_1, val_1 = ugali.utils.skymap.readSparseHealpixMap(
            fnames['mask_1'], 'MAGLIM', construct_map=False)
        logger.debug("Loading %s" % fnames['mask_2'])
        subpix_2, val_2 = ugali.utils.skymap.readSparseHealpixMap(
            fnames['mask_2'], 'MAGLIM', construct_map=False)
        subpix = numpy.intersect1d(subpix_1, subpix_2)
        superpix = numpy.unique(superpixel(subpix, nside_pixel, nside))
        inside |= numpy.in1d(pixels, superpix)

    return inside
コード例 #4
0
ファイル: skymap.py プロジェクト: kadrlica/ugali
def inFootprint(config, pixels, nside=None):
    """
    Open each valid filename for the set of pixels and determine the set 
    of subpixels with valid data.

    Parameters
    ----------
    config : config
        Configuration (file or object)
    pixels : array or int
        List of pixels to create footprint for
    nside  : int, optional
        Healpix nside
        
    Returns
    -------
    inside : array
        Boolean array of whether pixel is in footprint
    """
    logger.info("Calculating survey footprint...")

    config = Config(config)
    nside_catalog = config['coords']['nside_catalog']
    nside_likelihood = config['coords']['nside_likelihood']
    nside_pixel = config['coords']['nside_pixel']

    if np.isscalar(pixels): pixels = np.array([pixels])
    if nside is None: nside = nside_likelihood

    filenames = config.getFilenames()
    catalog_pixels = filenames['pix'].compressed()

    inside = np.zeros(len(pixels), dtype=bool)
    if not nside_catalog:
        catalog_pix = [0]
    else:
        catalog_pix = superpixel(pixels, nside, nside_catalog)
        catalog_pix = np.intersect1d(catalog_pix, catalog_pixels)

    fnames = filenames[catalog_pix]

    # Load the first mask
    logger.debug("Loading %s" % fnames['mask_1'])
    _nside, subpix1, val1 = read_partial_map(fnames['mask_1'],
                                             'MAGLIM',
                                             fullsky=False,
                                             multiproc=8)
    # Load the second mask
    logger.debug("Loading %s" % fnames['mask_2'])
    _nside, subpix2, val2 = read_partial_map(fnames['mask_2'],
                                             'MAGLIM',
                                             fullsky=False,
                                             multiproc=8)
    # Run the subpixels
    subpix = np.intersect1d(subpix1, subpix2)
    superpix = np.unique(superpixel(subpix, nside_pixel, nside))
    inside |= np.in1d(pixels, superpix)

    return inside
コード例 #5
0
ファイル: farm.py プロジェクト: balbinot/ugali
    def inFootprint(self, pixels, nside=None):
        """
        Open each valid filename for the set of pixels and determine the set 
        of subpixels with valid data.
        """
        if numpy.isscalar(pixels): pixels = numpy.array([pixels])
        if nside is None: nside = self.nside_likelihood

        inside = numpy.zeros( len(pixels), dtype='bool')
        if not self.nside_catalog:
            catalog_pix = [0]
        else:
            catalog_pix = superpixel(pixels,nside,self.nside_catalog)
            catalog_pix = numpy.intersect1d(catalog_pix,self.catalog_pixels)

        for filenames in self.filenames[catalog_pix]:
            #logger.debug("Loading %s"%filenames['mask_1'])
            subpix_1,val_1 = ugali.utils.skymap.readSparseHealpixMap(filenames['mask_1'],'MAGLIM',construct_map=False)
            #logger.debug("Loading %s"%filenames['mask_2'])
            subpix_2,val_2 = ugali.utils.skymap.readSparseHealpixMap(filenames['mask_2'],'MAGLIM',construct_map=False)
            subpix = numpy.intersect1d(subpix_1,subpix_2)
            superpix = numpy.unique(ugali.utils.skymap.superpixel(subpix,self.nside_pixel,nside))
            inside |= numpy.in1d(pixels, superpix)
            
        return inside
コード例 #6
0
ファイル: maglims.py プロジェクト: norashipp/ugali
def simple_split(config,dirname='split',force=False):
    config = Config(config)
    filenames = config.getFilenames()
    healpix = filenames['pix'].compressed()

    nside_catalog = config['coords']['nside_catalog']
    nside_pixel = config['coords']['nside_pixel']

    release = config['data']['release'].lower()
    band_1 = config['catalog']['mag_1_band']
    band_2 = config['catalog']['mag_2_band']

    mangledir = config['mangle']['dirname']

    mangle_file_1 = join(mangledir,config['mangle']['filename_1'])
    logger.info("Reading %s..."%mangle_file_1)
    mangle_1 = healpy.read_map(mangle_file_1)
    
    mangle_file_2 = join(mangledir,config['mangle']['filename_2'])
    logger.info("Reading %s..."%mangle_file_2)
    mangle_2 = healpy.read_map(mangle_file_2)

    basedir,basename = os.path.split(config['mask']['dirname'])
    if basename == dirname:
        msg = "Input and output directory are the same."
        raise Exception(msg)
    outdir = mkdir(os.path.join(basedir,dirname))

    mask_1 = os.path.basename(config['mask']['basename_1'])
    mask_2 = os.path.basename(config['mask']['basename_2'])

    for band,mangle,base in [(band_1,mangle_1,mask_1),(band_2,mangle_2,mask_2)]:
        maglim = MAGLIMS[release][band]

        nside_mangle = healpy.npix2nside(len(mangle))
        if nside_mangle != nside_pixel:
            msg = "Mangle nside different from pixel nside"
            logger.warning(msg)
            #raise Exception(msg)


        pixels = np.nonzero((mangle>0)&(mangle>maglim))[0]
        print len(pixels)
        superpix = superpixel(pixels,nside_mangle,nside_catalog)
        print healpix
        for hpx in healpix:
            outfile = join(outdir,base)%hpx
            if os.path.exists(outfile) and not force:
                logger.warning("Found %s; skipping..."%outfile)
                continue

            pix = pixels[superpix == hpx]
            print hpx, len(pix)

            maglims = maglim*np.ones(len(pix))
            data = dict(MAGLIM=maglims )
            logger.info('Writing %s...'%outfile)
            ugali.utils.skymap.writeSparseHealpixMap(pix,data,nside_pixel,outfile)
コード例 #7
0
def split(config,dirname='split',force=False):
    """ Take a pre-existing maglim map and divide it into
    chunks consistent with the catalog pixels. """

    config = Config(config)
    filenames = config.getFilenames()
    #healpix = filenames['pix'].compressed()

    # Check that things are ok
    basedir,basename = os.path.split(config['mask']['dirname'])
    #if basename == dirname:
    #    msg = "Input and output directory are the same."
    #    raise Exception(msg)
    outdir = mkdir(os.path.join(basedir,dirname))
    
    nside_catalog = config['coords']['nside_catalog']
    nside_pixel = config['coords']['nside_pixel']

    release = config['data']['release'].lower()
    band1 = config['catalog']['mag_1_band']
    band2 = config['catalog']['mag_2_band']

    # Read the magnitude limits
    maglimdir = config['maglim']['dirname']

    maglimfile_1 = join(maglimdir,config['maglim']['filename_1'])
    logger.info("Reading %s..."%maglimfile_1)
    maglim1 = read_map(maglimfile_1)
    
    maglimfile_2 = join(maglimdir,config['maglim']['filename_2'])
    logger.info("Reading %s..."%maglimfile_2)
    maglim2 = read_map(maglimfile_2)

    # Read the footprint
    footfile = config['data']['footprint']
    logger.info("Reading %s..."%footfile)
    footprint = read_map(footfile)

    # Output mask names
    mask1 = os.path.basename(config['mask']['basename_1'])
    mask2 = os.path.basename(config['mask']['basename_2'])

    for band,maglim,base in [(band1,maglim1,mask1),(band2,maglim2,mask2)]:
        nside_maglim = hp.npix2nside(len(maglim))
        if nside_maglim != nside_pixel:
            msg = "Mask nside different from pixel nside"
            logger.warning(msg)
            #raise Exception(msg)

        pixels = np.nonzero(maglim>0)[0]
        superpix = superpixel(pixels,nside_maglim,nside_catalog)
        healpix = np.unique(superpix)
        for hpx in healpix:
            outfile = join(outdir,base)%hpx
            if os.path.exists(outfile) and not force:
                logger.warning("Found %s; skipping..."%outfile)
                continue

            pix = pixels[superpix == hpx]
            print(hpx, len(pix))

            logger.info('Writing %s...'%outfile)
            data = odict()
            data['PIXEL']=pix
            data['MAGLIM']=maglim[pix].astype('f4')
            data['FRACDET']=footprint[pix].astype('f4')
            ugali.utils.healpix.write_partial_map(outfile,data,nside_pixel)
コード例 #8
0
ファイル: maglims.py プロジェクト: DarkEnergySurvey/ugali
def split(config,dirname='split',force=False):
    """ Take a pre-existing maglim map and divide it into
    chunks consistent with the catalog pixels. """

    config = Config(config)
    filenames = config.getFilenames()
    #healpix = filenames['pix'].compressed()

    # Check that things are ok
    basedir,basename = os.path.split(config['mask']['dirname'])
    #if basename == dirname:
    #    msg = "Input and output directory are the same."
    #    raise Exception(msg)
    outdir = mkdir(os.path.join(basedir,dirname))
    
    nside_catalog = config['coords']['nside_catalog']
    nside_pixel = config['coords']['nside_pixel']

    release = config['data']['release'].lower()
    band1 = config['catalog']['mag_1_band']
    band2 = config['catalog']['mag_2_band']

    # Read the magnitude limits
    maglimdir = config['maglim']['dirname']

    maglimfile_1 = join(maglimdir,config['maglim']['filename_1'])
    logger.info("Reading %s..."%maglimfile_1)
    maglim1 = read_map(maglimfile_1)
    
    maglimfile_2 = join(maglimdir,config['maglim']['filename_2'])
    logger.info("Reading %s..."%maglimfile_2)
    maglim2 = read_map(maglimfile_2)

    # Read the footprint
    footfile = config['data']['footprint']
    logger.info("Reading %s..."%footfile)
    footprint = read_map(footfile)

    # Output mask names
    mask1 = os.path.basename(config['mask']['basename_1'])
    mask2 = os.path.basename(config['mask']['basename_2'])

    for band,maglim,base in [(band1,maglim1,mask1),(band2,maglim2,mask2)]:
        nside_maglim = hp.npix2nside(len(maglim))
        if nside_maglim != nside_pixel:
            msg = "Mask nside different from pixel nside"
            logger.warning(msg)
            #raise Exception(msg)

        pixels = np.nonzero(maglim>0)[0]
        superpix = superpixel(pixels,nside_maglim,nside_catalog)
        healpix = np.unique(superpix)
        for hpx in healpix:
            outfile = join(outdir,base)%hpx
            if os.path.exists(outfile) and not force:
                logger.warning("Found %s; skipping..."%outfile)
                continue

            pix = pixels[superpix == hpx]
            print(hpx, len(pix))

            logger.info('Writing %s...'%outfile)
            data = odict()
            data['PIXEL']=pix
            data['MAGLIM']=maglim[pix].astype('f4')
            data['FRACDET']=footprint[pix].astype('f4')
            ugali.utils.healpix.write_partial_map(outfile,data,nside_pixel)
コード例 #9
0
ファイル: run_03.0_likelihood.py プロジェクト: kadrlica/ugali
def run(self):
    if 'scan' in self.opts.run:
        logger.info("Running 'scan'...")
        farm = Farm(self.config, verbose=self.opts.verbose)
        farm.submit_all(coords=self.opts.coords,
                        queue=self.opts.queue,
                        debug=self.opts.debug)

    if 'merge' in self.opts.run:
        logger.info("Running 'merge'...")
        mergefile = self.config.mergefile
        roifile = self.config.roifile
        filenames = self.config.likefile.split('_%')[0] + '_*.fits'
        infiles = np.array(sorted(glob.glob(filenames)))

        if 'mergedir' in self.config['output']:
            mkdir(self.config['output']['mergedir'])

        pixels = np.char.rpartition(
            np.char.rpartition(infiles, '_')[:, 0], '_')[:, -1]
        pixels = pixels.astype(int)
        superpixel = healpix.superpixel(
            pixels, self.config['coords']['nside_likelihood'],
            self.config['coords']['nside_merge'])

        for pix in np.unique(superpixel):
            outfile = mergefile % pix
            if exists(outfile) and not self.opts.force:
                logger.warn("  Found %s; skipping..." % outfile)
            else:
                healpix.merge_partial_maps(infiles[superpixel == pix],
                                           outfile,
                                           multiproc=8)

        if exists(roifile) and not self.opts.force:
            logger.warn("  Found %s; skipping..." % roifile)
        else:
            logger.info("  Merging likelihood headers...")
            healpix.merge_likelihood_headers(infiles, roifile)

    if 'tar' in self.opts.run:
        logger.info("Running 'tar'...")
        outdir = mkdir(self.config['output']['likedir'])
        logdir = mkdir(join(outdir, 'log'))

        scanfile = self.config.likefile.split('_%')[0] + '_[0-9]*.fits'
        tarfile = join(self.config.likefile.split('_%')[0] + '_pixels.tar.gz')
        jobname = 'tar'
        logfile = os.path.join(logdir, 'scan_tar.log')
        cmd = 'tar --remove-files -cvzf %s %s' % (tarfile, scanfile)
        if exists(tarfile) and not self.opts.force:
            logger.warn("  Found %s; skipping..." % tarfile)
        else:
            logger.info("  Tarring likelihood files...")
            logger.info(cmd)
            self.batch.submit(cmd, jobname, logfile)

    if 'plot' in self.opts.run:
        # WARNING: Loading the full 3D healpix map is memory intensive.
        logger.info("Running 'plot'...")
        # Should do this in environment variable
        import matplotlib
        matplotlib.use('Agg')
        import pylab as plt
        import ugali.utils.plotting as plotting
        skymap = ugali.utils.skymap.readSparseHealpixMap(
            self.config.mergefile, 'LOG_LIKELIHOOD')[1]
        plotting.plotSkymap(skymap)
        outdir = mkdir(self.config['output']['plotdir'])
        basename = os.path.basename(
            self.config.mergefile.replace('.fits', '.png'))
        outfile = os.path.join(outdir, basename)
        plt.savefig(outfile)

    if 'check' in self.opts.run:
        # Check the completion fraction
        logger.info("Running 'check'...")

        import fitsio
        import numpy as np
        import healpy as hp

        from ugali.utils.skymap import inFootprint

        # Load the ROI file
        roi = fitsio.read(self.config.roifile)
        done = roi['PIXEL']

        # Get all target pixels
        nside = self.config['coords']['nside_likelihood']
        pixels = np.arange(hp.nside2npix(nside))
        pixarea = hp.nside2pixarea(nside, degrees=True)
        foot = pixels[inFootprint(self.config, pixels)]

        # And find the pixels that haven't been processed
        undone = ~np.in1d(foot, done)
        hpxmap = np.zeros(len(pixels))
        hpxmap[foot[undone]] = True

        logger.info("Found %i incomplete pixels with an area of %.1f deg^2." %
                    (hpxmap.sum(), hpxmap.sum() * pixarea))
        hp.write_map('check.fits.gz', hpxmap)