def init_pru(self): ''' creates interface for pruss and irq ''' self.IRQ = 2 self.pruss = Icss('/dev/uio/pruss/module') self.irq = Uio("/dev/uio/pruss/irq%d" % self.IRQ, blocking=False) self.pruss.initialize(fill_memories=True)
def qep(self): if not self._qep: self.regs.clkreq.qep = 1 if self.regs.clkack.qep != 1: raise RuntimeError("submodule clock failure?") uio = Uio(self.path.parent / 'qep', parent=self) self._qep = uio.map(EQep) self._qep.irq.uio = uio return self._qep
def cap(self): if not self._cap: self.regs.clkreq.cap = 1 if self.regs.clkack.cap != 1: raise RuntimeError("submodule clock failure?") uio = Uio(self.path.parent / 'cap', parent=self) self._cap = uio.map(ECap) self._cap.irq.uio = uio return self._cap
def _add_submodule(self, name, Module, offset): module = None path = self.path / name if path.exists(): uio = Uio(path, parent=self) assert uio.region().address == self.region().address + offset module = uio.map(Module) module._uio = uio module.irq.uio = uio setattr(self, name, module) if module is None: # fallback, mainly for debugging: module = self.map(Module, offset) setattr(self, '_' + name, module)
#!/usr/bin/python3 from uio.ti.icss import Icss from uio.device import Uio import ctypes import asyncio loop = asyncio.get_event_loop() EVENT0 = 16 # range 16..31 EVENT1 = 17 # range 16..31 IRQ = 2 # range 2..9 pruss = Icss( "/dev/uio/pruss/module" ) irq = Uio( "/dev/uio/pruss/irq%d" % IRQ ) intc = pruss.intc (core0, core1) = pruss.cores pruss.initialize() # clear and enable events and route them to our irq for event in EVENT0, EVENT1: intc.ev_ch[ event ] = IRQ intc.ev_clear_one( event ) intc.ev_enable_one( event ) # load program onto both cores core0.load( 'fw/intc-test.bin' ) core1.load( 'fw/intc-test.bin' ) # map and set parameters
#!/usr/bin/python3 import asyncio from uio.device import Uio loop = asyncio.get_event_loop() pin = Uio("/dev/uio/gpio-irq", blocking=False) pin.irq_enable() def irq_callback(): pin.irq_recv() print("Ping!") # If the irq is level-triggered instead of edge-triggered, you should # ensure that it is no longer asserted before reenabling it, otherwise # it will just immediately trigger again. pin.irq_enable() loop.add_reader(pin.fileno(), irq_callback) loop.run_forever()
#!/usr/bin/python3 from uio.device import Uio pin = Uio("/dev/uio/gpio-irq") pin.irq_enable() while True: pin.irq_recv() print("Ping!") # If the irq is level-triggered instead of edge-triggered, you should # ensure that it is no longer asserted before reenabling it, otherwise # it will just immediately trigger again. pin.irq_enable()
#!/usr/bin/python3 from uio.ti.icss import Icss from uio.device import Uio import ctypes import os EVENT0 = 16 # range 16..31 EVENT1 = 17 # range 16..31 IRQ = 2 # range 2..9 pruss = Icss("/dev/uio/pruss/module") irq = Uio("/dev/uio/pruss/irq%d" % IRQ) intc = pruss.intc (core0, core1) = pruss.cores pruss.initialize() # clear and enable events and route them to our irq for event in EVENT0, EVENT1: intc.ev_ch[event] = IRQ intc.ev_clear_one(event) intc.ev_enable_one(event) # load program onto both cores core0.load('fw/intc-test.bin') core1.load('fw/intc-test.bin') # map and set parameters class Params(ctypes.Structure):
#!/usr/bin/python3 from uio.ti.icss import Icss from uio.device import Uio import ctypes EVENT0 = 16 # range 16..31 EVENT1 = 17 # range 16..31 IRQ = 2 # range 2..9 pruss = Icss("/dev/uio/pruss/module") irq = Uio("/dev/uio/pruss/irq%d" % IRQ) intc = pruss.intc (core0, core1) = pruss.cores pruss.initialize() # clear and enable events and route them to our irq for event in EVENT0, EVENT1: intc.ev_ch[event] = IRQ intc.ev_clear_one(event) intc.ev_enable_one(event) # load program onto both cores core0.load('fw/intc-test.bin') core1.load('fw/intc-test.bin') # map and set parameters class Params(ctypes.Structure): _fields_ = [
#!/usr/bin/python3 from uio.device import Uio import ctypes from ctypes import c_uint32 as uint ########## L3 interconnect service network ##################################### # # Welcome to the most fussy register space on the SoC! # Only single word access allowed. Byte/halfword/multi-word access = bus error. l3_sn = Uio( "/dev/uio/l3-sn" ) class ComponentID( ctypes.Structure ): _fields_ = [ ("vendor", uint, 16), # 1 = Arteris ("type", uint, 16), ("hash", uint, 24), ("version", uint, 8), ] class FlagOutput( ctypes.Structure ): src_t = uint # one bit per input _fields_ = [ ("enabled", src_t), #rw ("pending", src_t), #r- ] class FaultCombiner( ctypes.Structure ):
class Machine: def __init__(self, stepper=True, camera = False): if camera: from camera import Camera self.camera = Camera() self.loadconstants() self.position = [0, 0, 0] self.pindictionary() self.init_pru() self.currentdir = dirname(realpath(__file__)) self.bin_folder = join(self.currentdir, 'binaries') self.laserchannels = 0 self.configure_pins() if stepper: self.motor_spi = [self.init_stepper(label) for label in ['x','y','z']] # digipot is used to set laser power self.digipot = I2C.get_i2c_device(0x28, busnum=2) def configure_pins(self): ''' pins are configured via config-pin -f pinfile.bbio This relies on cape-universal. Cape-universal allows pins to be changed on the fly without reboot. ''' path = join(self.currentdir, 'config-pin', 'firestarter.bbio') MyOut = subprocess.Popen(['config-pin', '-f', path ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = MyOut.communicate() if stdout or stderr: raise Exception("Configuring pins via config-pin failed") @property def laser_power(self): ''' gets power set for laser driver chip can be in range [0-255] ''' return abs(self.digipot.readU8(0)) @laser_power.setter def laser_power(self, value): ''' set laser power to given value in range [0-255] for the laser driver chip. This does not turn on or off the laser. The laser power can be changed in two ways. First by using one or two channels. Second by settings a value between 0-255 at the laser driver chip. ''' if value < 0 or value > 255: raise Exception('Invalid laser power') self.digipot.write8(0, value) @property def laserchannels(self): ''' returns the number of laser channels turned on channels can be [0,1,2] ''' return self._laserchannels @laserchannels.setter def laserchannels(self, channels): ''' sets 0, 1 or 2 channels on. The laser power can be changed in two ways. First by using one or two channels. Second by setting a value in range [0-255] at the laser driver chip. Here the amount of channels used is set. :param channels: number of channels to be turned max is 2. ''' channels = int(round(channels)) if channels<0 or channels>2: raise Exception("Channels is not within set [0,1,2]") self.pruss.core0.load(join(self.bin_folder, 'switch_laser.bin')) class Params( Structure ): _fields_ = [ ("power", c_uint32) ] variables = self.pruss.core0.dram.map(Params) variables.power = int(round(channels)) self.pruss.core0.run() while not self.pruss.core0.halted: pass self._laserchannels = int(round(channels)) def test_photodiode(self): """ The laser is turned on. The polygon is spun at a rate of 1000 Hz for 5 seconds. The photodiode is measured for three seconds, if high within these three seconds test is succesfull, otherwise unsuccesfull. The laser is turned off. """ GPIO.output(self.pins['prism_enable'], GPIO.LOW) self.pruss.core0.load(join(self.bin_folder, 'photodiodetest.bin')) self.pruss.core0.run() print("Waiting for core to halt") while not self.pruss.core0.halted: pass byte0 = self.pruss.core0.dram.map(c_uint32) return_value = int(byte0.value) if return_value == 0: print("Laser detected with photodiode, test successfull") elif return_value == 1: print("Photo diode connected but no signal") else: print("Photo diode not connected") GPIO.output(self.pins['prism_enable'], GPIO.HIGH) def test_polygonmotor(self): """ spins the polygon at a rate of x Hz for 5 seconds """ GPIO.output(self.pins['prism_enable'], GPIO.LOW) self.pruss.core0.load(join(self.bin_folder, 'spinpolygon.bin')) self.pruss.core0.run() print("Spinning polygon for 5 seconds") while not self.pruss.core0.halted: pass GPIO.output(self.pins['prism_enable'], GPIO.HIGH) def test_createline(self): """ spins the polygon at a rate of x Hz for 5 seconds while laser channel 1 is enabled. As such a line is created without a phase lock loop. """ GPIO.output(self.pins['prism_enable'], GPIO.LOW) self.pruss.core0.load(join(self.bin_folder, 'createline.bin')) self.pruss.core0.run() print("Turning on channel 1 and spinning polygon for 5 seconds") while not self.pruss.core0.halted: pass GPIO.output(self.pins['prism_enable'], GPIO.HIGH) def loadconstants(self): ''' loads COMMANDS and Errors ''' # commands accepted by scanhead also defined in laserscribe constants self.COMMANDS = ['CMD_EMPTY', 'CMD_SCAN_DATA', 'CMD_SCAN_DATA_NO_SLED'] self.COMMANDS += ['CMD_EXIT', 'CMD_DONE'] self.COMMANDS = bidict(enumerate(self.COMMANDS)) # errors accepted by scanhead also defined in laserscribe constants self.ERRORS = ['ERROR_NONE', 'ERROR_DEBUG_BREAK', 'ERROR_MIRROR_SYNC'] self.ERRORS += ['ERROR_TIME_OVERRUN'] self.ERRORS = bidict(enumerate(self.ERRORS)) #TODO: place this in a dictionary or a named tuple # key variables self.RPM = 2400 # revolutions per minute self.TICK_DELAY = 100 # cpu cycles in loop PRU_SPEED = 200E6 # cpu cycles per second self.FACETS = 4 # number of sides of prism self.TICKS_START = 4375 # laser starts in off state self.SCANLINE_DATA_SIZE = 790 # there are 8 pixels per byte # so TICKS = 8*SCANLINE_DATA_SIZE # dependent variables self.TICKS_PER_PRISM_FACET = round(PRU_SPEED// # ticks per prism facet (self.TICK_DELAY*(self.RPM*self.FACETS)/60)) # time in seconds used to spinup prism self.SPINUP_TICKS = round(1.5 * PRU_SPEED / self.TICK_DELAY) # time in seconds waited for laser stabilization self.MAX_WAIT_STABLE_TICKS = round(1.125 * PRU_SPEED / self.TICK_DELAY) # ticks per half period of prism motor self.TICKS_HALF_PERIOD_MOTOR=int(round((self.TICKS_PER_PRISM_FACET*self.FACETS/6)/2)) self.SCANLINE_HEADER_SIZE = 1 # each line starts with a self.COMMAND self.START_RINGBUFFER = 1 # the zero byte is an error code, ringbuffer starts at 1 self.QUEUE_LEN = 8 # length of the ringbuffer # length of an item in the ringbuffer in bytes self.SCANLINE_ITEM_SIZE = self.SCANLINE_HEADER_SIZE + self.SCANLINE_DATA_SIZE # the prism is spin up, it is determined if the jitter per prism is within a certain threshold self.JITTER_THRESH = round(self.TICKS_PER_PRISM_FACET / 400 ) # after spinup the jitter allow is set smaller this leads to better results self.JITTER_ALLOW = round(self.TICKS_PER_PRISM_FACET / 3000 ) self.STEPSPERMM = {'x': 76.2, 'y': 76.2, 'z': 1600} # These things are needed in interpolator self.SLED_SPEED = 1/self.STEPSPERMM['y']*(self.RPM*self.FACETS/60) #print("Sled speed is fixed at {} mm/s".format(SLED_SPEED)) #print("Laser freq is {} Hz".format(200e6/TICK_DELAY)) def init_stepper(self, drive='x', mA=600, microsteps=16, stealthchop=True): ''' connects to stepper motor with current in miliamperes, number of microsteps and steatlchop, drive can be x, y or z. ''' GPIO_0_BASE = 0x44E07000 # pins order is x,y,z pindict = {'x':GPIO_0_BASE | 5,'y':GPIO_0_BASE | 30, 'z': GPIO_0_BASE | 26} try: motor = steppers.TMC2130(pindict[drive]) except KeyError: raise Exception("Invalid drive value") motor.begin() if motor.test_connection(): raise Exception("Failed to connent to {} motor".format(drive)) motor.rms_current(mA) motor.microsteps(microsteps) motor.toff(3) motor.stealthChop(stealthchop) return motor def init_pru(self): ''' creates interface for pruss and irq ''' self.IRQ = 2 self.pruss = Icss('/dev/uio/pruss/module') self.irq = Uio("/dev/uio/pruss/irq%d" % self.IRQ, blocking=False) self.pruss.initialize(fill_memories=True) def pindictionary(self): ''' creates dictionary for motor pins ''' self.pins = {'x_dir': "P9_42", 'y_dir': "P8_15", 'z_dir': "P8_17", 'step_enable': "P9_12", 'prism_enable': "P9_23"} for key, value in self.pins.items(): GPIO.setup(value, GPIO.OUT) def write_params(self, axis, distance, speed, core=0): ''' writes parameters to pru0 in moving distance defines a length in homing distance defines a limit :param axis; can be 'x', 'y' or 'z' used to determine steps per mm :param distance; distance in mm :param speed; speed in mm/s :param core; pru core map parameters to ''' try: steps_per_mm = self.STEPSPERMM[axis] except KeyError: raise Exception("Axis {} invalid".format(axis)) class Params( Structure ): _fields_ = [ #1 steps moved in case of move ("steps", c_uint32), #1 max amount steps moved for home ("halfperiodstep", c_uint32) #2 speed ] if core == 0: params = self.pruss.core0.dram.map(Params) else: params = self.pruss.core1.dram.map(Params) # round(np.float64(3.0)) -> 3.0, round(3.0) -> 3 params.steps = int(round(distance * steps_per_mm)) CPU_SPEED = 200E6 INST_PER_LOOP = 2 params.halfperiodstep = int(round(CPU_SPEED /(2*speed*steps_per_mm*INST_PER_LOOP))) def enable_steppers(self): ''' enables stepper motors by setting enable pin to low ''' GPIO.output(self.pins['step_enable'], GPIO.LOW) def disable_steppers(self): ''' disables stepper motors by setting enable pin to high ''' GPIO.output(self.pins['step_enable'], GPIO.HIGH) def home(self, direction='x', speed = 2): ''' homes axis in direction at given speed :param direction; homing direction, x or y :param speed; homing speed in mm/s ''' if direction == 'x': self.write_params('x', 300, speed, core=1) GPIO.output(self.pins['x_dir'], GPIO.LOW) self.pruss.core1.load(join(self.bin_folder, 'home_x.bin')) self.pruss.core1.run() while not self.pruss.core1.halted: pass if self.pruss.core1.r10: raise Exception("Homing x failed") elif direction == 'y': self.write_params('y', 300, speed, core=0) GPIO.output(self.pins['y_dir'], GPIO.LOW) self.pruss.core0.load(join(self.bin_folder, 'home_y.bin')) self.pruss.core0.run() while not self.pruss.core0.halted: pass if self.pruss.core0.r2: raise Exception("Homing y failed") elif direction == 'z': self.write_params('z', 300, speed, core=1) # home in the down direction GPIO.output(self.pins['z_dir'], GPIO.HIGH) self.pruss.core1.load(join(self.bin_folder, 'home_z.bin')) self.pruss.core1.run() while not self.pruss.core1.halted: pass if self.pruss.core1.r10: raise Exception("Homing z failed") else: raise Exception("Direction invalid") # update current position, move so homing switch is disabled if direction == 'x': self.position[0] = 0 self.move([40, self.position[1], self.position[2]], 4) self.position[0] = 0 elif direction == 'y': self.position[1] = 0 self.move([self.position[0], 10, self.position[2]], 4) self.position[1] = 0 else: # must be z exception already cared in homing procedure self.position[2] = 0 self.move([self.position[0], self.position[2], 10], 4) self.position[2] = 0 def move(self, target_position, speed = 2): ''' moves axis into position at given speed :param target position; list, [x, y, z] in mm :param speed; homing speed in mm/s ''' if target_position[0] < 0 or target_position[0] > 200: raise Exception('Target out of bounds') elif target_position[1] < 0 or target_position[1] > 200: raise Exception('Target out of bounds') elif target_position[2] < 0 or target_position[2] > 200: raise Exception('Target out of bounds') displacement = np.array(target_position) - np.array(self.position) if displacement[0]: direction = GPIO.HIGH if displacement[0] > 0 else GPIO.LOW GPIO.output(self.pins['x_dir'], direction) self.write_params('x', abs(displacement[0]), speed, core=1) self.pruss.core1.load(join(self.bin_folder, 'move_x.bin')) self.pruss.core1.run() while not self.pruss.core1.halted: pass if displacement[1]: direction = GPIO.HIGH if displacement[1] > 0 else GPIO.LOW GPIO.output(self.pins['y_dir'], direction) self.write_params('y', abs(displacement[1]), speed, core=0) self.pruss.core0.load(join(self.bin_folder, 'move_y.bin')) self.pruss.core0.run() while not self.pruss.core0.halted: pass if displacement[2]: direction = GPIO.LOW if displacement[2] > 0 else GPIO.HIGH GPIO.output(self.pins['z_dir'], direction) self.write_params('z', abs(displacement[2]), speed, core=1) self.pruss.core1.load(join(self.bin_folder, 'move_z.bin')) self.pruss.core1.run() while not self.pruss.core1.halted: pass self.position = target_position def enable_scanhead(self, singlefacet=False): ''' enables scanhead, ensure scanhead is not above substrate :param singlefacet; if true singlefacet exposure enabled ''' GPIO.output(self.pins['prism_enable'], GPIO.LOW) PRU0_ARM_INTERRUPT = 19 self.pruss.intc.ev_ch[PRU0_ARM_INTERRUPT] = self.IRQ self.pruss.intc.ev_clear_one(PRU0_ARM_INTERRUPT) self.pruss.intc.ev_enable_one(PRU0_ARM_INTERRUPT) self.pruss.core0.load(join(self.bin_folder, './stabilizer.bin')) # map and set parameters class Variables( Structure ): _fields_ = [ ("ringbuffer_size", c_uint32), ("item_size", c_uint32), ("start_sync_after", c_uint32), ("global_time", c_uint32), ("polygon_time", c_uint32), ("wait_countdown", c_uint32), ("hsync_time", c_uint32), ("item_start", c_uint32), ("item_pos", c_uint32), ("state", c_uint16), ("bit_loop", c_uint8), ("last_hsync_bit", c_uint8), ("single_facet", c_uint8), ("current_facet", c_uint8), ("ticks_half_period_motor", c_uint16), ("low_thresh_prism", c_uint16), ("high_thresh_prism", c_uint16), ("ticks_start", c_uint16), ("tick_delay", c_uint16), ("spinup_ticks", c_uint32), ("max_wait_stable_ticks", c_uint32) ] variables = self.pruss.core0.dram.map(Variables) if singlefacet: variables.single_facet = 1 else: variables.single_facet = 0 variables.item_size = self.SCANLINE_ITEM_SIZE variables.ringbuffer_size = self.SCANLINE_ITEM_SIZE * self.QUEUE_LEN variables.start_sync_after = self.TICKS_PER_PRISM_FACET - self.JITTER_ALLOW - 1 variables.ticks_half_period_motor = self.TICKS_HALF_PERIOD_MOTOR variables.low_thresh_prism = self.TICKS_PER_PRISM_FACET - self.JITTER_THRESH variables.high_thresh_prism = self.TICKS_PER_PRISM_FACET + self.JITTER_THRESH variables.ticks_start = self.TICKS_START variables.tick_delay = self.TICK_DELAY variables.max_wait_stable_ticks = self.MAX_WAIT_STABLE_TICKS variables.spinup_ticks = self.SPINUP_TICKS self.pruss.core0.run() #TODO: add check polygon is enabled and stable # if you can't disable does not work sleep(4) def receive_command(self, byte = None, check = False): ''' receives command at given offset :param byte; byte to read after trigger is received this is the command :param check; check wether the command equals command empty ''' if byte == None: byte = self.START_RINGBUFFER self.pruss.intc.out_enable_one(self.IRQ) # while loop is used in case irc_recv call is non-blocking while True: result = self.irq.irq_recv() if result: break else: sleep(1E-3) self.pruss.intc.ev_clear_one(self.pruss.intc.out_event[self.IRQ]) self.pruss.intc.out_enable_one(self.IRQ) [command_index] = self.pruss.core0.dram.map(length = 1, offset = byte) if check: received_command = self.COMMANDS[command_index] if received_command != 'CMD_EMPTY': error = ('Command not empty but {} '.format(received_command) + 'you could overwrite line not written to substrate yet.') raise Exception(error) return command_index def disable_scanhead(self): ''' disables scanhead function sleeps to offset is START_RINGBUFFER ''' data = [self.COMMANDS.inv['CMD_EXIT']] self.pruss.core0.dram.write(data, offset = self.START_RINGBUFFER) while not self.pruss.core0.halted: pass GPIO.output(self.pins['prism_enable'], GPIO.HIGH) def error_received(self): ''' prints errors received and returns error index can be used to read out errors from the laser scanner ''' ERROR_RESULT_POS = 0 error_index = self.pruss.core0.dram.map(length = 1, offset = ERROR_RESULT_POS)[0] if error_index: try: print("Error received; {}".format( self.ERRORS[error_index])) except IndexError: print("Error, error out of index") return error_index def expose(self, line_data, direction = True, multiplier = 1, move = False, takepicture = False): ''' expose given line_data to substrate in given direction each line is exposed multiplier times. returns result of takepicture :param line_data; data to write to scanner, uint8 :param multiplier; amount of times a line is exposed :param direction; direction of exposure, True is postive y (away from home) :param move; if enabled moves stage :param takepicture; if enabled takes picture ''' if line_data.dtype != np.uint8: raise Exception('Dtype must be uint8') if len(line_data) % self.SCANLINE_DATA_SIZE: raise Exception('Data invalid, length should be multilple' + ' of scanline size') if (line_data.max() < 1 or line_data.max() > 255): raise Exception('Data invalid, values out of range.') if move: self.enable_steppers() else: self.disable_steppers() if direction: GPIO.output(self.pins['y_dir'], GPIO.HIGH) else: GPIO.output(self.pins['y_dir'], GPIO.LOW) byte = self.START_RINGBUFFER for scanline in range(0, len(line_data)//self.SCANLINE_DATA_SIZE): for counter in range(0, multiplier): self.receive_command(byte, True) # you start the picture where the laser is just off again if scanline == self.QUEUE_LEN and takepicture: self.camera.get_spotinfo(wait=False) extra_data = list(line_data[scanline*self.SCANLINE_DATA_SIZE :(scanline+1)*self.SCANLINE_DATA_SIZE]) if counter == 0: write_data = ([self.COMMANDS.inv['CMD_SCAN_DATA']] + extra_data) else: write_data = ([self.COMMANDS.inv['CMD_SCAN_DATA_NO_SLED']] + extra_data) self.pruss.core0.dram.write(write_data, offset = byte) byte += self.SCANLINE_ITEM_SIZE if byte > self.SCANLINE_DATA_SIZE * self.QUEUE_LEN: byte = self.START_RINGBUFFER if takepicture: return self.camera.get_answer() return byte
#!/usr/bin/python3 import asyncio from uio.device import Uio loop = asyncio.get_event_loop() pin = Uio( "/dev/uio/gpio-irq", blocking=False ) pin.irq_enable() def irq_callback(): pin.irq_recv() print( "Ping!" ) # If the irq is level-triggered instead of edge-triggered, you should # ensure that it is no longer asserted before reenabling it, otherwise # it will just immediately trigger again. pin.irq_enable() loop.add_reader( pin.fileno(), irq_callback ) loop.run_forever()
#!/usr/bin/python3 from uio.device import Uio import ctypes from ctypes import c_uint32 as uint ########## L3 interconnect service network ##################################### # # Welcome to the most fussy register space on the SoC! # Only single word access allowed. Byte/halfword/multi-word access = bus error. l3_sn = Uio("/dev/uio/l3-sn") class ComponentID(ctypes.Structure): _fields_ = [ ("vendor", uint, 16), # 1 = Arteris ("type", uint, 16), ("hash", uint, 24), ("version", uint, 8), ] class FlagOutput(ctypes.Structure): src_t = uint # one bit per input _fields_ = [ ("enabled", src_t), #rw ("pending", src_t), #r- ]
#!/usr/bin/python3 from uio.device import Uio from uio.ti.subarctic.lcdc import Lcdc, lcdc_fck from time import sleep uio = Uio( "/dev/uio/lcdc" ) lcdc = uio.map( Lcdc ) # lcdc functional clock rate fck = lcdc_fck() print( "lcdc_fck = %f MHz" % (fck/1e6) ) # global config lcdc.clock_div = 6 # FIXME pick suitable value lcdc.pinmux = 0 # rfb # memory clock rate mck = fck / lcdc.clock_div print( "lcdc_mck = %f MHz (1 cycle = %f ns)" % (mck/1e6, 1e9/mck) ) # sanity checks if fck > 252000000: raise RuntimeError('lcdc functional clock exceeds max spec') if mck > 126000000: raise RuntimeError('lcdc memory clock exceeds max spec') elif mck > 42000000 and lcdc.pinmux == 0: raise RuntimeError('lcdc memory clock exceeds max spec for rfb mode') rfb = lcdc.rfb rfb.protocol = 4 # hd44780
if TOTAL_LINES <= QUEUE_LEN: raise Exception("Less than {} lines!".format(QUEUE_LEN)) # DATA to send before PRU start data = [ERRORS.inv['ERROR_NONE']] + [0]*4 data += ([COMMANDS.inv['CMD_SCAN_DATA']] + LINE)* QUEUE_LEN # ENABLE polygon motor polygon_enable = "P9_23" GPIO.setup(polygon_enable, GPIO.OUT) GPIO.output(polygon_enable, GPIO.LOW) pruss = Icss("/dev/uio/pruss/module") irq = Uio("/dev/uio/pruss/irq%d" % IRQ, blocking=False) pruss.initialize() pruss.intc.ev_ch[PRU0_ARM_INTERRUPT] = IRQ pruss.intc.ev_clear_one(PRU0_ARM_INTERRUPT) pruss.intc.ev_enable_one(PRU0_ARM_INTERRUPT) pruss.core0.load('./determinefacettime.bin') pruss.core0.dram.write(data) pruss.core0.run() print("running core and uploaded data") byte = START_RINGBUFFER # increased scanline size each loop response = 1 # you read through ring buffer, it is extended by one to read out hsync time
#!/usr/bin/python3 from uio.ti.icss import Icss from uio.device import Uio import ctypes import asyncio loop = asyncio.get_event_loop() EVENT0 = 16 # range 16..31 EVENT1 = 17 # range 16..31 IRQ = 2 # range 2..9 pruss = Icss("/dev/uio/pruss/module") irq = Uio("/dev/uio/pruss/irq%d" % IRQ) intc = pruss.intc (core0, core1) = pruss.cores pruss.initialize() # clear and enable events and route them to our irq for event in EVENT0, EVENT1: intc.ev_ch[event] = IRQ intc.ev_clear_one(event) intc.ev_enable_one(event) # load program onto both cores core0.load('fw/intc-test.bin') core1.load('fw/intc-test.bin')
#!/usr/bin/python3 from uio.device import Uio pin = Uio( "/dev/uio/gpio-irq" ) pin.irq_enable() while True: pin.irq_recv() print( "Ping!" ) # If the irq is level-triggered instead of edge-triggered, you should # ensure that it is no longer asserted before reenabling it, otherwise # it will just immediately trigger again. pin.irq_enable()