コード例 #1
0
def benchmark_maxradius():
    print(" ndim |  npts | duration")
    for ndim in 2, 4, 8, 16, 32, 64:
        plotpoints = []
        np.random.seed(ndim)
        for npts in 100, 400, 1000, 4000:
            points = np.random.uniform(size=(npts, ndim))
            transformLayer = ScalingLayer()
            region = MLFriends(points, transformLayer)

            niter = 0
            total_duration = 0
            while total_duration < 1:
                start = time.time()
                maxr = region.compute_maxradiussq(nbootstraps=20)
                total_duration += time.time() - start
                niter += 1
            print('%5d | %5d | %.2fms  val=%f' %
                  (ndim, npts, total_duration * 1000 / niter, maxr))
            plotpoints.append((npts, total_duration * 1000 / niter / npts**2))
        plt.plot(*zip(*plotpoints), label='ndim=%d' % ndim)

    plt.xlabel('Number of live points')
    plt.ylabel('Duration [ms] / nlive$^2$')
    plt.yscale('log')
    plt.xscale('log')
    plt.legend(loc='best', prop=dict(size=10))
    plt.savefig('testmaxradius.pdf', bbox_inches='tight')
    plt.close()
コード例 #2
0
def test_aharm_sampler():
    def loglike(theta):
        return -0.5 * (((theta - 0.5) / 0.01)**2).sum(axis=1)

    def transform(x):
        return x

    seed = 1
    Nlive = 10
    np.random.seed(seed)
    us = np.random.uniform(size=(Nlive, 2))
    Ls = loglike(us)
    Lmin = Ls.min()
    transformLayer = ScalingLayer()
    region = MLFriends(us, transformLayer)
    region.maxradiussq, region.enlarge = region.compute_enlargement()
    region.create_ellipsoid()
    assert region.inside(us).all()
    nsteps = 10
    sampler = AHARMSampler(nsteps=nsteps, region_filter=True)

    nfunccalls = 0
    ncalls = 0
    while True:
        u, p, L, nc = sampler.__next__(region, Lmin, us, Ls, transform,
                                       loglike)
        nfunccalls += 1
        ncalls += nc
        if u is not None:
            break
        if nfunccalls > 100 + nsteps:
            assert False, ('infinite loop?', seed, nsteps, Nlive)
    print("done in %d function calls, %d likelihood evals" %
          (nfunccalls, ncalls))
コード例 #3
0
def test_transform():
    np.random.seed(1)
    corrs = np.arange(-1, 1, 0.1)
    corrs *= 0.999
    for corr in corrs:
        for scaleratio in [1, 0.001]:
            covmatrix = np.array([[1., corr], [corr, 1.]])
            points = np.random.multivariate_normal(np.zeros(2),
                                                   covmatrix,
                                                   size=1000)
            print(corr, scaleratio, covmatrix.flatten(), points.shape)
            points[:, 0] = points[:, 0] * 0.01 * scaleratio + 0.5
            points[:, 1] = points[:, 1] * 0.01 + 0.5

            layer = ScalingLayer()
            layer.optimize(points, points)
            tpoints = layer.transform(points)
            assert tpoints.shape == points.shape, (tpoints.shape, points.shape)
            points2 = layer.untransform(tpoints)
            assert tpoints.shape == points2.shape, (tpoints.shape,
                                                    points2.shape)

            assert (points2 == points).all(), (points, tpoints, points2)

            # transform a single point
            points = points[0]
            tpoints = layer.transform(points)
            assert tpoints.shape == points.shape, (tpoints.shape, points.shape)
            points2 = layer.untransform(tpoints)
            assert tpoints.shape == points2.shape, (tpoints.shape,
                                                    points2.shape)

            assert (points2 == points).all(), (points, tpoints, points2)
コード例 #4
0
def run_aharm_sampler():
    for seed in [733] + list(range(10)):
        print()
        print("SEED=%d" % seed)
        print()
        np.random.seed(seed)
        nsteps = max(1, int(10**np.random.uniform(0, 3)))
        Nlive = int(10**np.random.uniform(1.5, 3))
        print("Nlive=%d nsteps=%d" % (Nlive, nsteps))
        sampler = AHARMSampler(nsteps, adaptive_nsteps=False, region_filter=False)
        us = np.random.uniform(0.6, 0.8, size=(4000, 2))
        Ls = loglike_vectorized(us)
        i = np.argsort(Ls)[-Nlive:]
        us = us[i,:]
        Ls = Ls[i]
        Lmin = Ls.min()
        
        transformLayer = ScalingLayer()
        transformLayer.optimize(us, us)
        region = MLFriends(us, transformLayer)
        region.maxradiussq, region.enlarge = region.compute_enlargement()
        region.create_ellipsoid()
        nfunccalls = 0
        ncalls = 0
        while True:
            u, p, L, nc = sampler.__next__(region, Lmin, us, Ls, transform, loglike)
            nfunccalls += 1
            ncalls += nc
            if u is not None:
                break
            if nfunccalls > 100 + nsteps:
                assert False, ('infinite loop?', seed, nsteps, Nlive)
        print("done in %d function calls, %d likelihood evals" % (nfunccalls, ncalls))
コード例 #5
0
def prepare_problem(problemname, ndim, nlive, sampler):
    loglike, grad, volume, warmup = get_problem(problemname, ndim=ndim)
    if hasattr(sampler, 'set_gradient'):
        sampler.set_gradient(grad)
    np.random.seed(1)
    us = np.random.uniform(size=(nlive, ndim))

    if ndim > 1:
        transformLayer = AffineLayer()
    else:
        transformLayer = ScalingLayer()
    transformLayer.optimize(us, us)
    region = MLFriends(us, transformLayer)
    region.maxradiussq, region.enlarge = region.compute_enlargement(
        nbootstraps=30)
    region.create_ellipsoid(minvol=1.0)

    Ls = np.array([loglike(u) for u in us])
    ncalls = 0
    nok = 0
    i = 0
    while True:
        if i % int(nlive * 0.2) == 0:
            minvol = (1 - 1. / nlive)**i
            nextTransformLayer = transformLayer.create_new(us,
                                                           region.maxradiussq,
                                                           minvol=minvol)
            nextregion = MLFriends(us, nextTransformLayer)
            nextregion.maxradiussq, nextregion.enlarge = nextregion.compute_enlargement(
                nbootstraps=30)
            if nextregion.estimate_volume() <= region.estimate_volume():
                region = nextregion
                transformLayer = region.transformLayer
            region.create_ellipsoid(minvol=minvol)

        # replace lowest likelihood point
        j = np.argmin(Ls)
        Lmin = float(Ls[j])
        while True:
            u, v, logl, nc = sampler.__next__(region, Lmin, us, Ls, transform,
                                              loglike)
            ncalls += nc
            if logl is not None:
                break

        us[j, :] = u
        region.u[j, :] = u
        region.unormed[j, :] = region.transformLayer.transform(u)
        Ls[j] = logl
        i = i + 1
        #print(i, Lmin, volume(Lmin, ndim))
        if np.isfinite(volume(Lmin, ndim)):
            nok += 1

        if nok > 2 * nlive + 1000:
            break
    return region, i, Lmin, us, Ls, transform, loglike
コード例 #6
0
def test_ellipsoid_bracket(plot=False):
    for seed in range(20):
        print("seed:", seed)
        np.random.seed(seed)
        if seed % 2 == 0:
            us = np.random.normal(size=(2**np.random.randint(3, 10), 2))
            us /= ((us**2).sum(axis=1)**0.5).reshape((-1, 1))
            us = us * 0.1 + 0.5
        else:
            us = np.random.uniform(size=(2**np.random.randint(3, 10), 2))

        if plot:
            import matplotlib.pyplot as plt
            plt.plot(us[:, 0], us[:, 1], 'o ', ms=2)

        transformLayer = ScalingLayer()
        region = MLFriends(us, transformLayer)
        try:
            region.maxradiussq, region.enlarge = region.compute_enlargement()
            region.create_ellipsoid()
        except ValueError:
            continue

        print(region.ellipsoid_center)
        print(region.enlarge)
        print(region.ellipsoid_cov)
        print(region.ellipsoid_invcov)
        print(region.ellipsoid_axes)
        print(region.ellipsoid_inv_axes)

        ucurrent = np.array([2**0.5 * 0.1 / 2 + 0.5, 2**0.5 * 0.1 / 2 + 0.5])
        ucurrent = np.array([0.4, 0.525])
        v = np.array([1., 0])
        if plot: plt.plot(ucurrent[0], ucurrent[1], 'o')
        print("from", ucurrent, "in direction", v)
        left, right = ellipsoid_bracket(ucurrent, v, region.ellipsoid_center,
                                        region.ellipsoid_inv_axes,
                                        region.enlarge)
        uleft = ucurrent + v * left
        uright = ucurrent + v * right

        if plot:
            plt.plot([uleft[0], uright[0]], [uleft[1], uright[1]], 'x-')

            plt.savefig('test_ellipsoid_bracket.pdf', bbox_inches='tight')
            plt.close()
        print("ellipsoid bracket:", left, right)
        assert left <= 0, left
        assert right >= 0, right

        assert_point_touches_ellipsoid(ucurrent, v, left,
                                       region.ellipsoid_center,
                                       region.ellipsoid_invcov, region.enlarge)
        assert_point_touches_ellipsoid(ucurrent, v, right,
                                       region.ellipsoid_center,
                                       region.ellipsoid_invcov, region.enlarge)
コード例 #7
0
def make_region(ndim):
    us = np.random.uniform(size=(1000, ndim))
    if ndim > 1:
        transformLayer = AffineLayer()
    else:
        transformLayer = ScalingLayer()
    transformLayer.optimize(us, us)
    region = MLFriends(us, transformLayer)
    region.maxradiussq, region.enlarge = region.compute_enlargement(
        nbootstraps=30)
    region.create_ellipsoid(minvol=1.0)
    return region
コード例 #8
0
def test_region_sampling_scaling(plot=False):
    np.random.seed(1)
    upoints = np.random.uniform(0.2, 0.5, size=(1000, 2))
    upoints[:, 1] *= 0.1

    transformLayer = ScalingLayer(wrapped_dims=[])
    transformLayer.optimize(upoints, upoints)
    region = MLFriends(upoints, transformLayer)
    region.maxradiussq, region.enlarge = region.compute_enlargement(
        nbootstraps=30)
    print("enlargement factor:", region.enlarge, 1 / region.enlarge)
    region.create_ellipsoid()
    nclusters = transformLayer.nclusters
    assert nclusters == 1
    assert np.allclose(region.unormed, region.transformLayer.transform(
        upoints)), "transform should be reproducible"
    assert region.inside(
        upoints).all(), "live points should lie near live points"
    if plot:
        plt.plot(upoints[:, 0], upoints[:, 1], 'x ')
        for method in region.sampling_methods:
            points, nc = method(nsamples=400)
            plt.plot(points[:, 0],
                     points[:, 1],
                     'o ',
                     label=str(method.__name__))
        plt.legend(loc='best')
        plt.savefig('test_regionsampling_scaling.pdf', bbox_inches='tight')
        plt.close()

    for method in region.sampling_methods:
        print("sampling_method:", method)
        newpoints = method(nsamples=4000)
        lo1, lo2 = newpoints.min(axis=0)
        hi1, hi2 = newpoints.max(axis=0)
        assert 0.15 < lo1 < 0.25, (method.__name__, newpoints, lo1, hi1, lo2,
                                   hi2)
        assert 0.015 < lo2 < 0.025, (method.__name__, newpoints, lo1, hi1, lo2,
                                     hi2)
        assert 0.45 < hi1 < 0.55, (method.__name__, newpoints, lo1, hi1, lo2,
                                   hi2)
        assert 0.045 < hi2 < 0.055, (method.__name__, newpoints, lo1, hi1, lo2,
                                     hi2)
        assert region.inside(newpoints).mean() > 0.99, region.inside(
            newpoints).mean()

    region.maxradiussq = 1e-90
    assert np.allclose(region.unormed, region.transformLayer.transform(
        upoints)), "transform should be reproducible"
    assert region.inside(
        upoints).all(), "live points should lie very near themselves"
コード例 #9
0
ファイル: test_clustering.py プロジェクト: ruizca/UltraNest
def test_clusteringcase_eggbox():
    from ultranest.mlfriends import update_clusters, ScalingLayer, MLFriends
    points = np.loadtxt(os.path.join(here, "eggboxregion.txt"))
    transformLayer = ScalingLayer()
    transformLayer.optimize(points, points)
    region = MLFriends(points, transformLayer)
    maxr = region.compute_maxradiussq(nbootstraps=30)
    assert 1e-10 < maxr < 5e-10
    print('maxradius:', maxr)
    nclusters, clusteridxs, overlapped_points = update_clusters(
        points, points, maxr)
    # plt.title('nclusters: %d' % nclusters)
    # for i in np.unique(clusteridxs):
    #    x, y = points[clusteridxs == i].transpose()
    #    plt.scatter(x, y)
    # plt.savefig('testclustering_eggbox.pdf', bbox_inches='tight')
    # plt.close()
    assert 14 < nclusters < 20, nclusters
コード例 #10
0
def test_wrap(plot=False):
    np.random.seed(1)
    for Npoints in 10, 100, 1000:
        for wrapids in [[], [0], [1], [0, 1]]:
            print("Npoints=%d wrapped_dims=%s" % (Npoints, wrapids))
            #wrapids = np.array(wrapids)
            points = np.random.normal(0.5, 0.01, size=(Npoints, 2))
            for wrapi in wrapids:
                points[:, wrapi] = np.fmod(points[:, wrapi] + 0.5, 1)

            assert (points > 0).all(), points
            assert (points < 1).all(), points
            layer = ScalingLayer(wrapped_dims=wrapids)
            layer.optimize(points, points)
            tpoints = layer.transform(points)
            assert tpoints.shape == points.shape, (tpoints.shape, points.shape)
            points2 = layer.untransform(tpoints)
            assert tpoints.shape == points2.shape, (tpoints.shape,
                                                    points2.shape)

            if plot:
                plt.subplot(1, 2, 1)
                plt.scatter(points[:, 0], points[:, 1])
                plt.scatter(points2[:, 0], points2[:, 1], marker='x')
                plt.subplot(1, 2, 2)
                plt.scatter(tpoints[:, 0], tpoints[:, 1])
                plt.savefig("testtransform_%d_wrap%d.pdf" %
                            (Npoints, len(wrapids)),
                            bbox_inches='tight')
                plt.close()

            assert np.allclose(points2, points), (points, tpoints, points2)

            layer = AffineLayer(wrapped_dims=wrapids)
            layer.optimize(points, points)
            tpoints = layer.transform(points)
            assert tpoints.shape == points.shape, (tpoints.shape, points.shape)
            points2 = layer.untransform(tpoints)
            assert tpoints.shape == points2.shape, (tpoints.shape,
                                                    points2.shape)
コード例 #11
0
ファイル: test_clustering.py プロジェクト: ruizca/UltraNest
def test_overclustering_eggbox_txt():
    from ultranest.mlfriends import update_clusters, ScalingLayer, MLFriends
    np.random.seed(1)
    for i in [20, 23, 24, 27, 49]:
        print()
        print("==== TEST CASE %d =====================" % i)
        print()
        points = np.loadtxt(os.path.join(here, "overclustered_u_%d.txt" % i))

        for k in range(3):
            transformLayer = ScalingLayer(wrapped_dims=[])
            transformLayer.optimize(points, points)
            region = MLFriends(points, transformLayer)
            maxr = region.compute_maxradiussq(nbootstraps=30)
            region.maxradiussq = maxr
            nclusters = transformLayer.nclusters

            print("manual: r=%e nc=%d" % (region.maxradiussq, nclusters))
            # assert 1e-10 < maxr < 5e-10
            nclusters, clusteridxs, overlapped_points = update_clusters(
                points, points, maxr)
            print("reclustered: nc=%d" % (nclusters))

        if False:
            plt.title('nclusters: %d' % nclusters)
            for k in np.unique(clusteridxs):
                x, y = points[clusteridxs == k].transpose()
                plt.scatter(x, y)
            plt.savefig('testoverclustering_eggbox_%d.pdf' % i,
                        bbox_inches='tight')
            plt.close()
        assert 14 < nclusters < 20, (nclusters, i)

        for j in range(3):
            nclusters, clusteridxs, overlapped_points = update_clusters(
                points, points, maxr)
            assert 14 < nclusters < 20, (nclusters, i)
コード例 #12
0
def evaluate_warmed_sampler(problemname,
                            ndim,
                            nlive,
                            nsteps,
                            sampler,
                            seed=1,
                            region_class=RobustEllipsoidRegion):
    loglike, grad, volume, warmup = get_problem(problemname, ndim=ndim)
    if hasattr(sampler, 'set_gradient'):
        sampler.set_gradient(grad)
    np.random.seed(seed)

    def multi_loglike(xs):
        return np.asarray([loglike(x) for x in xs])

    us = np.array([warmup(ndim) for i in range(nlive)])
    Ls = np.array([loglike(u) for u in us])
    vol0 = volume(Ls.min(), ndim)
    nwarmup = 3 * nlive

    if ndim > 1:
        transformLayer = AffineLayer()
    else:
        transformLayer = ScalingLayer()
    transformLayer.optimize(us, us)
    region = region_class(us, transformLayer)
    region.maxradiussq, region.enlarge = region.compute_enlargement(
        nbootstraps=30)
    region.create_ellipsoid(minvol=vol0)
    assert region.ellipsoid_center is not None
    sampler.region_changed(Ls, region)

    Lsequence = []
    stepsequence = []
    ncalls = 0
    for i in tqdm.trange(nsteps + nwarmup):
        if i % int(nlive * 0.2) == 0:
            minvol = (1 - 1. / nlive)**i * vol0
            with warnings.catch_warnings(), np.errstate(all='raise'):
                try:
                    nextTransformLayer = transformLayer.create_new(
                        us, region.maxradiussq, minvol=minvol)
                    nextregion = region_class(us, nextTransformLayer)
                    nextregion.maxradiussq, nextregion.enlarge = nextregion.compute_enlargement(
                        nbootstraps=30)
                    if isinstance(nextregion, RobustEllipsoidRegion
                                  ) or nextregion.estimate_volume(
                                  ) <= region.estimate_volume():
                        nextregion.create_ellipsoid(minvol=minvol)
                        region = nextregion
                        transformLayer = region.transformLayer
                        assert region.ellipsoid_center is not None
                        sampler.region_changed(Ls, region)
                except Warning as w:
                    print("not updating region because: %s" % w)
                except FloatingPointError as e:
                    print("not updating region because: %s" % e)
                except np.linalg.LinAlgError as e:
                    print("not updating region because: %s" % e)

        # replace lowest likelihood point
        j = np.argmin(Ls)
        Lmin = float(Ls[j])
        while True:
            u, v, logl, nc = sampler.__next__(region, Lmin, us, Ls, transform,
                                              multi_loglike)
            if i > nwarmup:
                ncalls += nc
            if logl is not None:
                assert np.isfinite(u).all(), u
                assert np.isfinite(v).all(), v
                assert np.isfinite(logl), logl
                break

        if i > nwarmup:
            Lsequence.append(Lmin)
            stepsequence.append(quantify_step(us[sampler.starti, :], u))

        us[j, :] = u
        Ls[j] = logl

    Lsequence = np.asarray(Lsequence)
    return Lsequence, ncalls, np.array(stepsequence)
コード例 #13
0
def benchmark_transform():
    npts = 400
    for layer in 'scale', 'affine':
        print(" ndim | duration  [%s]" % layer)
        tplotpoints = []
        rplotpoints = []
        nplotpoints = []
        for ndim in 2, 4, 8, 16, 32, 64, 128, 256, :
            np.random.seed(ndim)
            points = np.random.uniform(0.4, 0.6, size=(npts, ndim))
            transformLayer = ScalingLayer(
            ) if layer == 'scale' else AffineLayer()
            region = MLFriends(points, transformLayer)
            region.maxradiussq, region.enlarge = region.compute_enlargement(
                nbootstraps=30)
            region.create_ellipsoid()

            niter = 0
            total_duration = 0
            while total_duration < .1:
                start = time.time()
                u = region.transformLayer.untransform(
                    np.random.normal(size=(ndim)))
                region.transformLayer.transform(u)
                total_duration += time.time() - start
                niter += 1
            print('%5d | %.2fms ' % (ndim, total_duration * 1000 / niter))
            tplotpoints.append((ndim, total_duration * 1000 / niter))

            niter = 0
            total_duration = 0
            while total_duration < .1:
                u = np.random.normal(0.5, 0.1, size=(10, ndim))
                start = time.time()
                region.inside(u)
                total_duration += time.time() - start
                niter += 1
            print('%5d |          %.2fms ' %
                  (ndim, total_duration * 1000 / niter))
            rplotpoints.append((ndim, total_duration * 1000 / niter))

            niter = 0
            total_duration = 0
            while total_duration < .1:
                u = np.random.normal(0.5, 0.1, size=(10, ndim))
                start = time.time()
                array = np.empty((10), dtype=int)
                array[:] = -1
                array = np.empty((10), dtype=int)
                array[:] = -1
                array = np.empty((10), dtype=int)
                array[:] = -1
                total_duration += time.time() - start
                niter += 1
            print('%5d |                 %.2fms ' %
                  (ndim, total_duration * 1000 / niter))
            nplotpoints.append((ndim, total_duration * 1000 / niter))
        plt.plot(*zip(*tplotpoints), label=layer + ' transform')
        plt.plot(*zip(*rplotpoints), label=layer + ' region.inside')
        plt.plot(*zip(*nplotpoints), label=layer + ' array')

    plt.xlabel('Number of dimensions')
    plt.ylabel('Duration [ms]')
    plt.yscale('log')
    plt.xscale('log')
    plt.legend(loc='best', prop=dict(size=10))
    plt.savefig('testtransform.pdf', bbox_inches='tight')
    plt.close()