energy[4][t] = dc.e[1] energy[5][t] = dc.e[2] energy[6][t] = bk.ez cost[0][t]=hvac.userComfCosti(0) cost[1][t]=hvac.userComfCosti(1) cost[2][t]=hvac.userComfCosti(2) cost[3][t]=dc.dcCosti(0) cost[4][t]=dc.dcCosti(1) cost[5][t]=dc.dcCosti(2) cost[6][t]=bk.bgCost() totalcost[t]=hvac.userComfCost()+dc.dcCost()+bk.bgCost() ################################################ plt.plot(totalcost) nmub.saveFile('baseline1.p',totalcost) def plot_lines(datas, numb_of_line, markerstyle, labels, title ): for line in range(numb_of_line): plt.plot(datas[line], marker = markerstyle, markersize=4, label=labels[line]) plt.legend(loc=1) plt.title(title) plt.show() #labels = ['Office 1','Office 2','Office 3','DC 1','DC 2','DC 3','BK'] #plot_lines(energy,7,".",labels,"Energy") #plot_lines(sigma,7,"+",labels,"Sigma") #labels = ['Office 1','Office 2','Office 3','DC 1','DC 2','DC 3','BK'] #plot_lines(cost,7,"+",labels,"Cost") #labels = ['Office 1','Office 2','Office 3']
energy[5][t] = dc.e[2] energy[6][t] = bk.ez cost[0][t]=hvac.userComfCosti(0) cost[1][t]=hvac.userComfCosti(1) cost[2][t]=hvac.userComfCosti(2) cost[3][t]=dc.dcCosti(0) cost[4][t]=dc.dcCosti(1) cost[5][t]=dc.dcCosti(2) cost[6][t]=bk.bgCost() totalcost[t]=hvac.userComfCost()+dc.dcCost()+bk.bgCost() ################################################ nmub.saveFile('DANE.p',totalcost) plt.plot(totalcost) labels = ['Office 1','Office 2','Office 3','DC 1','DC 2','DC 3','BK'] def totalCost(data,opt): # fig=plt.figure(figsize=(6,3.5)) plt.plot(data, color='black',marker = '^', markersize=3, label='Total cost') #optimal value plt.plot(np.ones(runTime)*opt,color='black',ls='--', markersize=4, label='Optimal') plt.xlim([0,runTime]) plt.ylim([35,60]) plt.legend(loc=1) plt.xlabel('Iterations') plt.ylabel('Total cost')