def main(argv): del argv # unused arg tf.io.gfile.makedirs(FLAGS.output_dir) logging.info('Saving checkpoints at %s', FLAGS.output_dir) tf.random.set_seed(FLAGS.seed) train_batch_size = (FLAGS.per_core_batch_size * FLAGS.num_cores // FLAGS.batch_repetitions) test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // train_batch_size steps_per_eval = IMAGENET_VALIDATION_IMAGES // test_batch_size if FLAGS.use_gpu: logging.info('Use GPU') strategy = tf.distribute.MirroredStrategy() else: logging.info('Use TPU at %s', FLAGS.tpu if FLAGS.tpu is not None else 'local') resolver = tf.distribute.cluster_resolver.TPUClusterResolver( tpu=FLAGS.tpu) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) builder = utils.ImageNetInput(data_dir=FLAGS.data_dir, use_bfloat16=FLAGS.use_bfloat16) train_dataset = builder.as_dataset(split=tfds.Split.TRAIN, batch_size=train_batch_size) test_dataset = builder.as_dataset(split=tfds.Split.TEST, batch_size=test_batch_size) train_dataset = strategy.experimental_distribute_dataset(train_dataset) test_dataset = strategy.experimental_distribute_dataset(test_dataset) if FLAGS.use_bfloat16: policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16') tf.keras.mixed_precision.experimental.set_policy(policy) with strategy.scope(): logging.info('Building Keras ResNet-50 model') model = imagenet_model.resnet50( input_shape=(FLAGS.ensemble_size, 224, 224, 3), num_classes=NUM_CLASSES, ensemble_size=FLAGS.ensemble_size, width_multiplier=FLAGS.width_multiplier) logging.info('Model input shape: %s', model.input_shape) logging.info('Model output shape: %s', model.output_shape) logging.info('Model number of weights: %s', model.count_params()) # Scale learning rate and decay epochs by vanilla settings. base_lr = FLAGS.base_learning_rate * train_batch_size / 256 lr_schedule = [ # (multiplier, epoch to start) tuples (1.0, FLAGS.lr_warmup_epochs), (0.1, int(FLAGS.lr_decay_epochs[0])), (0.01, int(FLAGS.lr_decay_epochs[1])), (0.001, int(FLAGS.lr_decay_epochs[2])) ] learning_rate = utils.LearningRateSchedule(steps_per_epoch, base_lr, FLAGS.train_epochs, lr_schedule) optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=0.9, nesterov=True) metrics = { 'train/negative_log_likelihood': tf.keras.metrics.Mean(), 'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'train/loss': tf.keras.metrics.Mean(), 'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins), 'test/negative_log_likelihood': tf.keras.metrics.Mean(), 'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins), } for i in range(FLAGS.ensemble_size): metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean() metrics['test/accuracy_member_{}'.format(i)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) test_diversity = { 'test/disagreement': tf.keras.metrics.Mean(), 'test/average_kl': tf.keras.metrics.Mean(), 'test/cosine_similarity': tf.keras.metrics.Mean(), } logging.info('Finished building Keras ResNet-50 model') checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir) initial_epoch = 0 if latest_checkpoint: # checkpoint.restore must be within a strategy.scope() so that optimizer # slot variables are mirrored. checkpoint.restore(latest_checkpoint) logging.info('Loaded checkpoint %s', latest_checkpoint) initial_epoch = optimizer.iterations.numpy() // steps_per_epoch summary_writer = tf.summary.create_file_writer( os.path.join(FLAGS.output_dir, 'summaries')) @tf.function def train_step(iterator): """Training StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images, labels = inputs batch_size = tf.shape(images)[0] main_shuffle = tf.random.shuffle( tf.tile(tf.range(batch_size), [FLAGS.batch_repetitions])) to_shuffle = tf.cast( tf.cast(tf.shape(main_shuffle)[0], tf.float32) * (1. - FLAGS.input_repetition_probability), tf.int32) shuffle_indices = [ tf.concat([ tf.random.shuffle(main_shuffle[:to_shuffle]), main_shuffle[to_shuffle:] ], axis=0) for _ in range(FLAGS.ensemble_size) ] images = tf.stack([ tf.gather(images, indices, axis=0) for indices in shuffle_indices ], axis=1) labels = tf.stack([ tf.gather(labels, indices, axis=0) for indices in shuffle_indices ], axis=1) with tf.GradientTape() as tape: logits = model(images, training=True) if FLAGS.use_bfloat16: logits = tf.cast(logits, tf.float32) negative_log_likelihood = tf.reduce_mean( tf.reduce_sum( tf.keras.losses.sparse_categorical_crossentropy( labels, logits, from_logits=True), axis=1)) filtered_variables = [] for var in model.trainable_variables: # Apply l2 on the weights. This excludes BN parameters and biases, but # pay caution to their naming scheme. if 'kernel' in var.name or 'bias' in var.name: filtered_variables.append(tf.reshape(var, (-1, ))) l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss( tf.concat(filtered_variables, axis=0)) # Scale the loss given the TPUStrategy will reduce sum all gradients. loss = negative_log_likelihood + l2_loss scaled_loss = loss / strategy.num_replicas_in_sync grads = tape.gradient(scaled_loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) probs = tf.nn.softmax(tf.reshape(logits, [-1, NUM_CLASSES])) flat_labels = tf.reshape(labels, [-1]) metrics['train/ece'].update_state(flat_labels, probs) metrics['train/loss'].update_state(loss) metrics['train/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['train/accuracy'].update_state(flat_labels, probs) strategy.run(step_fn, args=(next(iterator), )) @tf.function def test_step(iterator): """Evaluation StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images, labels = inputs images = tf.tile(tf.expand_dims(images, 1), [1, FLAGS.ensemble_size, 1, 1, 1]) logits = model(images, training=False) if FLAGS.use_bfloat16: logits = tf.cast(logits, tf.float32) probs = tf.nn.softmax(logits) per_probs = tf.transpose(probs, perm=[1, 0, 2]) diversity_results = um.average_pairwise_diversity( per_probs, FLAGS.ensemble_size) for k, v in diversity_results.items(): test_diversity['test/' + k].update_state(v) for i in range(FLAGS.ensemble_size): member_probs = probs[:, i] member_loss = tf.keras.losses.sparse_categorical_crossentropy( labels, member_probs) metrics['test/nll_member_{}'.format(i)].update_state( member_loss) metrics['test/accuracy_member_{}'.format(i)].update_state( labels, member_probs) # Negative log marginal likelihood computed in a numerically-stable way. labels_tiled = tf.tile(tf.expand_dims(labels, 1), [1, FLAGS.ensemble_size]) log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy( labels_tiled, logits, from_logits=True) negative_log_likelihood = tf.reduce_mean( -tf.reduce_logsumexp(log_likelihoods, axis=[1]) + tf.math.log(float(FLAGS.ensemble_size))) probs = tf.math.reduce_mean(probs, axis=1) # marginalize metrics['test/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['test/accuracy'].update_state(labels, probs) metrics['test/ece'].update_state(labels, probs) strategy.run(step_fn, args=(next(iterator), )) metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()}) train_iterator = iter(train_dataset) start_time = time.time() for epoch in range(initial_epoch, FLAGS.train_epochs): logging.info('Starting to run epoch: %s', epoch) for step in range(steps_per_epoch): train_step(train_iterator) current_step = epoch * steps_per_epoch + (step + 1) max_steps = steps_per_epoch * FLAGS.train_epochs time_elapsed = time.time() - start_time steps_per_sec = float(current_step) / time_elapsed eta_seconds = (max_steps - current_step) / steps_per_sec message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. ' 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format( current_step / max_steps, epoch + 1, FLAGS.train_epochs, steps_per_sec, eta_seconds / 60, time_elapsed / 60)) if step % 20 == 0: logging.info(message) test_iterator = iter(test_dataset) for step in range(steps_per_eval): if step % 20 == 0: logging.info('Starting to run eval step %s of epoch: %s', step, epoch) test_start_time = time.time() test_step(test_iterator) ms_per_example = (time.time() - test_start_time) * 1e6 / test_batch_size metrics['test/ms_per_example'].update_state(ms_per_example) logging.info('Train Loss: %.4f, Accuracy: %.2f%%', metrics['train/loss'].result(), metrics['train/accuracy'].result() * 100) logging.info('Test NLL: %.4f, Accuracy: %.2f%%', metrics['test/negative_log_likelihood'].result(), metrics['test/accuracy'].result() * 100) for i in range(FLAGS.ensemble_size): logging.info( 'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i, metrics['test/nll_member_{}'.format(i)].result(), metrics['test/accuracy_member_{}'.format(i)].result() * 100) total_metrics = metrics.copy() total_metrics.update(test_diversity) total_results = { name: metric.result() for name, metric in total_metrics.items() } with summary_writer.as_default(): for name, result in total_results.items(): tf.summary.scalar(name, result, step=epoch + 1) for _, metric in total_metrics.items(): metric.reset_states() if (FLAGS.checkpoint_interval > 0 and (epoch + 1) % FLAGS.checkpoint_interval == 0): checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved checkpoint to %s', checkpoint_name) final_save_name = os.path.join(FLAGS.output_dir, 'model') model.save(final_save_name) logging.info('Saved model to %s', final_save_name)
def main(argv): del argv # unused arg tf.random.set_seed(FLAGS.seed) per_core_batch_size = FLAGS.per_core_batch_size // FLAGS.ensemble_size batch_size = per_core_batch_size * FLAGS.num_cores steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // batch_size steps_per_eval = IMAGENET_VALIDATION_IMAGES // batch_size logging.info('Saving checkpoints at %s', FLAGS.output_dir) if FLAGS.use_gpu: logging.info('Use GPU') strategy = tf.distribute.MirroredStrategy() else: logging.info('Use TPU at %s', FLAGS.tpu if FLAGS.tpu is not None else 'local') resolver = tf.distribute.cluster_resolver.TPUClusterResolver( tpu=FLAGS.tpu) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) builder = utils.ImageNetInput(data_dir=FLAGS.data_dir, use_bfloat16=FLAGS.use_bfloat16) train_dataset = builder.as_dataset(split=tfds.Split.TRAIN, batch_size=batch_size) clean_test_dataset = builder.as_dataset(split=tfds.Split.TEST, batch_size=batch_size) train_dataset = strategy.experimental_distribute_dataset(train_dataset) test_datasets = { 'clean': strategy.experimental_distribute_dataset(clean_test_dataset) } if FLAGS.corruptions_interval > 0: corruption_types, max_intensity = utils.load_corrupted_test_info() for name in corruption_types: for intensity in range(1, max_intensity + 1): dataset_name = '{0}_{1}'.format(name, intensity) dataset = utils.load_corrupted_test_dataset( batch_size=batch_size, corruption_name=name, corruption_intensity=intensity, use_bfloat16=FLAGS.use_bfloat16) test_datasets[dataset_name] = ( strategy.experimental_distribute_dataset(dataset)) if FLAGS.use_bfloat16: policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16') tf.keras.mixed_precision.experimental.set_policy(policy) summary_writer = tf.summary.create_file_writer( os.path.join(FLAGS.output_dir, 'summaries')) with strategy.scope(): logging.info('Building Keras ResNet-50 model') model = imagenet_model.rank1_resnet50( input_shape=(224, 224, 3), num_classes=NUM_CLASSES, alpha_initializer=FLAGS.alpha_initializer, gamma_initializer=FLAGS.gamma_initializer, alpha_regularizer=FLAGS.alpha_regularizer, gamma_regularizer=FLAGS.gamma_regularizer, use_additive_perturbation=FLAGS.use_additive_perturbation, ensemble_size=FLAGS.ensemble_size, random_sign_init=FLAGS.random_sign_init, dropout_rate=FLAGS.dropout_rate, prior_stddev=FLAGS.prior_stddev, use_tpu=not FLAGS.use_gpu) logging.info('Model input shape: %s', model.input_shape) logging.info('Model output shape: %s', model.output_shape) logging.info('Model number of weights: %s', model.count_params()) # Scale learning rate and decay epochs by vanilla settings. base_lr = FLAGS.base_learning_rate * batch_size / 256 learning_rate = utils.LearningRateSchedule(steps_per_epoch, base_lr, FLAGS.train_epochs, _LR_SCHEDULE) optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=0.9, nesterov=True) metrics = { 'train/negative_log_likelihood': tf.keras.metrics.Mean(), 'train/kl': tf.keras.metrics.Mean(), 'train/kl_scale': tf.keras.metrics.Mean(), 'train/elbo': tf.keras.metrics.Mean(), 'train/loss': tf.keras.metrics.Mean(), 'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins), 'test/negative_log_likelihood': tf.keras.metrics.Mean(), 'test/kl': tf.keras.metrics.Mean(), 'test/elbo': tf.keras.metrics.Mean(), 'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins), } if FLAGS.corruptions_interval > 0: corrupt_metrics = {} for intensity in range(1, max_intensity + 1): for corruption in corruption_types: dataset_name = '{0}_{1}'.format(corruption, intensity) corrupt_metrics['test/nll_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/kl_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/elbo_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/accuracy_{}'.format( dataset_name)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) corrupt_metrics['test/ece_{}'.format(dataset_name)] = ( um.ExpectedCalibrationError(num_bins=FLAGS.num_bins)) test_diversity = {} training_diversity = {} if FLAGS.ensemble_size > 1: for i in range(FLAGS.ensemble_size): metrics['test/nll_member_{}'.format( i)] = tf.keras.metrics.Mean() metrics['test/accuracy_member_{}'.format(i)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) test_diversity = { 'test/disagreement': tf.keras.metrics.Mean(), 'test/average_kl': tf.keras.metrics.Mean(), 'test/cosine_similarity': tf.keras.metrics.Mean(), } training_diversity = { 'train/disagreement': tf.keras.metrics.Mean(), 'train/average_kl': tf.keras.metrics.Mean(), 'train/cosine_similarity': tf.keras.metrics.Mean(), } logging.info('Finished building Keras ResNet-50 model') checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir) initial_epoch = 0 if latest_checkpoint: # checkpoint.restore must be within a strategy.scope() so that optimizer # slot variables are mirrored. checkpoint.restore(latest_checkpoint) logging.info('Loaded checkpoint %s', latest_checkpoint) initial_epoch = optimizer.iterations.numpy() // steps_per_epoch def compute_l2_loss(model): filtered_variables = [] for var in model.trainable_variables: # Apply l2 on the BN parameters and bias terms. This # excludes only fast weight approximate posterior/prior parameters, # but pay caution to their naming scheme. if ('kernel' in var.name or 'batch_norm' in var.name or 'bias' in var.name): filtered_variables.append(tf.reshape(var, (-1, ))) l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss( tf.concat(filtered_variables, axis=0)) return l2_loss @tf.function def train_step(iterator): """Training StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images, labels = inputs if FLAGS.ensemble_size > 1: images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1]) labels = tf.tile(labels, [FLAGS.ensemble_size]) with tf.GradientTape() as tape: logits = model(images, training=True) if FLAGS.use_bfloat16: logits = tf.cast(logits, tf.float32) probs = tf.nn.softmax(logits) if FLAGS.ensemble_size > 1: per_probs = tf.reshape( probs, tf.concat([[FLAGS.ensemble_size, -1], probs.shape[1:]], 0)) diversity_results = um.average_pairwise_diversity( per_probs, FLAGS.ensemble_size) negative_log_likelihood = tf.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy( labels, logits, from_logits=True)) l2_loss = compute_l2_loss(model) kl = sum(model.losses) / APPROX_IMAGENET_TRAIN_IMAGES kl_scale = tf.cast(optimizer.iterations + 1, kl.dtype) kl_scale /= steps_per_epoch * FLAGS.kl_annealing_epochs kl_scale = tf.minimum(1., kl_scale) kl_loss = kl_scale * kl # Scale the loss given the TPUStrategy will reduce sum all gradients. loss = negative_log_likelihood + l2_loss + kl_loss scaled_loss = loss / strategy.num_replicas_in_sync elbo = -(negative_log_likelihood + l2_loss + kl) grads = tape.gradient(scaled_loss, model.trainable_variables) # Separate learning rate implementation. if FLAGS.fast_weight_lr_multiplier != 1.0: grads_and_vars = [] for grad, var in zip(grads, model.trainable_variables): # Apply different learning rate on the fast weights. This excludes BN # and slow weights, but pay caution to the naming scheme. if ('batch_norm' not in var.name and 'kernel' not in var.name): grads_and_vars.append( (grad * FLAGS.fast_weight_lr_multiplier, var)) else: grads_and_vars.append((grad, var)) optimizer.apply_gradients(grads_and_vars) else: optimizer.apply_gradients(zip(grads, model.trainable_variables)) metrics['train/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['train/kl'].update_state(kl) metrics['train/kl_scale'].update_state(kl_scale) metrics['train/elbo'].update_state(elbo) metrics['train/loss'].update_state(loss) metrics['train/accuracy'].update_state(labels, logits) metrics['train/ece'].update_state(labels, probs) if FLAGS.ensemble_size > 1: for k, v in diversity_results.items(): training_diversity['train/' + k].update_state(v) strategy.run(step_fn, args=(next(iterator), )) @tf.function def test_step(iterator, dataset_name): """Evaluation StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images, labels = inputs if FLAGS.ensemble_size > 1: images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1]) logits = tf.reshape([ model(images, training=False) for _ in range(FLAGS.num_eval_samples) ], [FLAGS.num_eval_samples, FLAGS.ensemble_size, -1, NUM_CLASSES]) if FLAGS.use_bfloat16: logits = tf.cast(logits, tf.float32) all_probs = tf.nn.softmax(logits) probs = tf.math.reduce_mean(all_probs, axis=[0, 1]) # marginalize # Negative log marginal likelihood computed in a numerically-stable way. labels_broadcasted = tf.broadcast_to( labels, [FLAGS.num_eval_samples, FLAGS.ensemble_size, labels.shape[0]]) log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy( labels_broadcasted, logits, from_logits=True) negative_log_likelihood = tf.reduce_mean( -tf.reduce_logsumexp(log_likelihoods, axis=[0, 1]) + tf.math.log(float(FLAGS.num_eval_samples * FLAGS.ensemble_size))) l2_loss = compute_l2_loss(model) kl = sum(model.losses) / IMAGENET_VALIDATION_IMAGES elbo = -(negative_log_likelihood + l2_loss + kl) if dataset_name == 'clean': if FLAGS.ensemble_size > 1: per_probs = tf.reduce_mean(all_probs, axis=0) # marginalize samples diversity_results = um.average_pairwise_diversity( per_probs, FLAGS.ensemble_size) for k, v in diversity_results.items(): test_diversity['test/' + k].update_state(v) for i in range(FLAGS.ensemble_size): member_probs = per_probs[i] member_loss = tf.keras.losses.sparse_categorical_crossentropy( labels, member_probs) metrics['test/nll_member_{}'.format(i)].update_state( member_loss) metrics['test/accuracy_member_{}'.format( i)].update_state(labels, member_probs) metrics['test/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['test/kl'].update_state(kl) metrics['test/elbo'].update_state(elbo) metrics['test/accuracy'].update_state(labels, probs) metrics['test/ece'].update_state(labels, probs) else: corrupt_metrics['test/nll_{}'.format( dataset_name)].update_state(negative_log_likelihood) corrupt_metrics['test/kl_{}'.format( dataset_name)].update_state(kl) corrupt_metrics['test/elbo_{}'.format( dataset_name)].update_state(elbo) corrupt_metrics['test/accuracy_{}'.format( dataset_name)].update_state(labels, probs) corrupt_metrics['test/ece_{}'.format( dataset_name)].update_state(labels, probs) strategy.run(step_fn, args=(next(iterator), )) train_iterator = iter(train_dataset) start_time = time.time() for epoch in range(initial_epoch, FLAGS.train_epochs): logging.info('Starting to run epoch: %s', epoch) for step in range(steps_per_epoch): train_step(train_iterator) current_step = epoch * steps_per_epoch + (step + 1) max_steps = steps_per_epoch * FLAGS.train_epochs time_elapsed = time.time() - start_time steps_per_sec = float(current_step) / time_elapsed eta_seconds = (max_steps - current_step) / steps_per_sec message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. ' 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format( current_step / max_steps, epoch + 1, FLAGS.train_epochs, steps_per_sec, eta_seconds / 60, time_elapsed / 60)) if step % 20 == 0: logging.info(message) datasets_to_evaluate = {'clean': test_datasets['clean']} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): datasets_to_evaluate = test_datasets for dataset_name, test_dataset in datasets_to_evaluate.items(): logging.info('Testing on dataset %s', dataset_name) test_iterator = iter(test_dataset) for step in range(steps_per_eval): if step % 20 == 0: logging.info('Starting to run eval step %s of epoch: %s', step, epoch) test_step(test_iterator, dataset_name) logging.info('Done with testing on %s', dataset_name) corrupt_results = {} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): corrupt_results = utils.aggregate_corrupt_metrics( corrupt_metrics, corruption_types, max_intensity, FLAGS.alexnet_errors_path) logging.info('Train Loss: %.4f, Accuracy: %.2f%%', metrics['train/loss'].result(), metrics['train/accuracy'].result() * 100) logging.info('Test NLL: %.4f, Accuracy: %.2f%%', metrics['test/negative_log_likelihood'].result(), metrics['test/accuracy'].result() * 100) for i in range(FLAGS.ensemble_size): logging.info( 'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i, metrics['test/nll_member_{}'.format(i)].result(), metrics['test/accuracy_member_{}'.format(i)].result() * 100) total_metrics = metrics.copy() total_metrics.update(training_diversity) total_metrics.update(test_diversity) total_results = { name: metric.result() for name, metric in total_metrics.items() } total_results.update(corrupt_results) with summary_writer.as_default(): for name, result in total_results.items(): tf.summary.scalar(name, result, step=epoch + 1) for metric in total_metrics.values(): metric.reset_states() if (FLAGS.checkpoint_interval > 0 and (epoch + 1) % FLAGS.checkpoint_interval == 0): checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved checkpoint to %s', checkpoint_name) final_checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved last checkpoint to %s', final_checkpoint_name)