コード例 #1
0
ファイル: pure_pursuit.py プロジェクト: sumr4693/svea_starter
def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):

    state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)

    #  lastIndex = len(cx) - 1
    time = 0.0
    x = [state.x]
    y = [state.y]
    yaw = [state.yaw]
    v = [state.v]
    t = [0.0]
    a = [0.0]
    d = [0.0]
    target_ind, mindis = calc_target_index(state, cx, cy)
    find_goal = False

    maxdis = 0.5

    while T >= time:
        di, target_ind, dis = pure_pursuit_control(state, cx, cy, target_ind)

        target_speed = speed_profile[target_ind]
        target_speed = target_speed * \
            (maxdis - min(dis, maxdis - 0.1)) / maxdis

        ai = PIDControl(target_speed, state.v)
        state = unicycle_model.update(state, ai, di)

        if abs(state.v) <= stop_speed and target_ind <= len(cx) - 2:
            target_ind += 1

        time = time + unicycle_model.dt

        # check goal
        dx = state.x - goal[0]
        dy = state.y - goal[1]
        if math.sqrt(dx**2 + dy**2) <= goal_dis:
            find_goal = True
            break

        x.append(state.x)
        y.append(state.y)
        yaw.append(state.yaw)
        v.append(state.v)
        t.append(time)
        a.append(ai)
        d.append(di)

        if target_ind % 1 == 0 and animation:
            plt.cla()
            plt.plot(cx, cy, "-r", label="course")
            plt.plot(x, y, "ob", label="trajectory")
            plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
            plt.axis("equal")
            plt.grid(True)
            plt.title("speed:" + str(round(state.v, 2)) + "tind:" +
                      str(target_ind))
            plt.pause(0.0001)

    else:
        print("Time out!!")

    return t, x, y, yaw, v, a, d, find_goal
def main():
    #  target course
    import numpy as np
    cx = np.arange(0, 50, 0.1)
    cy = [math.sin(ix / 5.0) * ix / 2.0 for ix in cx]

    target_speed = 5.0 / 3.6

    T = 15.0  # max simulation time

    state = unicycle_model.State(x=-0.0, y=-3.0, yaw=0.0, v=0.0)
    #  state = unicycle_model.State(x=-1.0, y=-5.0, yaw=0.0, v=-30.0 / 3.6)
    #  state = unicycle_model.State(x=10.0, y=5.0, yaw=0.0, v=-30.0 / 3.6)
    #  state = unicycle_model.State(
    #  x=3.0, y=5.0, yaw=math.radians(-40.0), v=-10.0 / 3.6)
    #  state = unicycle_model.State(
    #  x=3.0, y=5.0, yaw=math.radians(40.0), v=50.0 / 3.6)

    lastIndex = len(cx) - 1
    time = 0.0
    x = [state.x]
    y = [state.y]
    yaw = [state.yaw]
    v = [state.v]
    t = [0.0]
    target_index = calc_target_index(state, cx, cy)

    while T >= time and lastIndex > target_index:
        ai = PIDControl(target_speed, state.v)
        di, target_index = pure_pursuit_control(state, cx, cy, target_index)
        state = unicycle_model.update(state, ai, di)

        time = time + unicycle_model.dt

        x.append(state.x)
        y.append(state.y)
        yaw.append(state.yaw)
        v.append(state.v)
        t.append(time)

        #  plt.cla()
        #  plt.plot(cx, cy, ".r", label="course")
        #  plt.plot(x, y, "-b", label="trajectory")
        #  plt.plot(cx[target_index], cy[target_index], "xg", label="target")
        #  plt.axis("equal")
        #  plt.grid(True)
        #  plt.pause(0.1)
        #  input()

    flg, ax = plt.subplots(1)
    plt.plot(cx, cy, ".r", label="course")
    plt.plot(x, y, "-b", label="trajectory")
    plt.legend()
    plt.xlabel("x[m]")
    plt.ylabel("y[m]")
    plt.axis("equal")
    plt.grid(True)

    flg, ax = plt.subplots(1)
    plt.plot(t, [iv * 3.6 for iv in v], "-r")
    plt.xlabel("Time[s]")
    plt.ylabel("Speed[km/h]")
    plt.grid(True)
    plt.show()
コード例 #3
0
ファイル: pure_pursuit.py プロジェクト: 520reus/MyNotes
def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):

    state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)

    #  lastIndex = len(cx) - 1
    time = 0.0
    x = [state.x]
    y = [state.y]
    yaw = [state.yaw]
    v = [state.v]
    t = [0.0]
    a = [0.0]
    d = [0.0]
    target_ind, mindis = calc_target_index(state, cx, cy)
    find_goal = False

    maxdis = 0.5

    while T >= time:
        di, target_ind, dis = pure_pursuit_control(state, cx, cy, target_ind)

        target_speed = speed_profile[target_ind]
        target_speed = target_speed * \
            (maxdis - min(dis, maxdis - 0.1)) / maxdis

        ai = PIDControl(target_speed, state.v)
        state = unicycle_model.update(state, ai, di)

        if abs(state.v) <= stop_speed and target_ind <= len(cx) - 2:
            target_ind += 1

        time = time + unicycle_model.dt

        # check goal
        dx = state.x - goal[0]
        dy = state.y - goal[1]
        if math.hypot(dx, dy) <= goal_dis:
            find_goal = True
            break

        x.append(state.x)
        y.append(state.y)
        yaw.append(state.yaw)
        v.append(state.v)
        t.append(time)
        a.append(ai)
        d.append(di)

        if target_ind % 1 == 0 and animation:  # pragma: no cover
            plt.cla()
            # for stopping simulation with the esc key.
            plt.gcf().canvas.mpl_connect(
                'key_release_event',
                lambda event: [exit(0) if event.key == 'escape' else None])
            plt.plot(cx, cy, "-r", label="course")
            plt.plot(x, y, "ob", label="trajectory")
            plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
            plt.axis("equal")
            plt.grid(True)
            plt.title("speed:" + str(round(state.v, 2)) + "tind:" +
                      str(target_ind))
            plt.pause(0.0001)

    else:
        print("Time out!!")

    return t, x, y, yaw, v, a, d, find_goal