def __init__(self, n_visible, n_hidden): super(BinaryBinaryRBM, self).__init__() # data shape self.n_visible = n_visible self.n_hidden = n_hidden # units self.v = units.BinaryUnits(self, name='v') # visibles self.h = units.BinaryUnits(self, name='h') # hiddens # parameters self.W = parameters.ProdParameters(self, [self.v, self.h], theano.shared( value=self._initial_W(), name='W'), name='W') # weights self.bv = parameters.BiasParameters(self, self.v, theano.shared( value=self._initial_bv(), name='bv'), name='bv') # visible bias self.bh = parameters.BiasParameters(self, self.h, theano.shared( value=self._initial_bh(), name='bh'), name='bh') # hidden bias
def __init__(self, n_visible, n_hidden_mean, n_hidden_precision): super(LearntPrecisionSeparateGaussianBinaryRBM, self).__init__() # data shape self.n_visible = n_visible self.n_hidden_mean = n_hidden_mean self.n_hidden_precision = n_hidden_precision # units self.v = units.LearntPrecisionGaussianUnits(self, name='v') # visibles self.hm = units.BinaryUnits(self, name='hm') # hiddens for mean self.hp = units.BinaryUnits(self, name='hp') # hiddens for precision # parameters self.Wm = parameters.ProdParameters( self, [self.v, self.hm], theano.shared(value=self._initial_W(self.n_visible, self.n_hidden_mean), name='Wm'), name='Wm') # weights self.Wp = parameters.ProdParameters( self, [self.v.precision_units, self.hp], theano.shared(value=-np.abs( self._initial_W(self.n_visible, self.n_hidden_precision)) / 1000, name='Wp'), name='Wp') # weights self.bvm = parameters.BiasParameters( self, self.v, theano.shared(value=self._initial_bias(self.n_visible), name='bvm'), name='bvm') # visible bias self.bvp = parameters.BiasParameters( self, self.v.precision_units, theano.shared(value=self._initial_bias(self.n_visible), name='bvp'), name='bvp') # precision bias self.bhm = parameters.BiasParameters( self, self.hm, theano.shared(value=self._initial_bias(self.n_hidden_mean), name='bhm'), name='bhm') # hidden bias for mean self.bhp = parameters.BiasParameters( self, self.hp, theano.shared(value=self._initial_bias(self.n_hidden_precision) + 1.0, name='bhp'), name='bhp') # hidden bias for precision
def __init__(self, n_visible, n_hidden): super(LearntPrecisionGaussianBinaryRBM, self).__init__() # data shape self.n_visible = n_visible self.n_hidden = n_hidden # units self.v = units.LearntPrecisionGaussianUnits(self, name='v') # visibles self.h = units.BinaryUnits(self, name='h') # hiddens # parameters self.Wm = parameters.ProdParameters(self, [self.v, self.h], theano.shared( value=self._initial_W(), name='Wm'), name='Wm') # weights self.Wp = parameters.ProdParameters( self, [self.v.precision_units, self.h], theano.shared(value=-np.abs(self._initial_W()) / 1000, name='Wp'), name='Wp') # weights self.bvm = parameters.BiasParameters( self, self.v, theano.shared(value=self._initial_bias(self.n_visible), name='bvm'), name='bvm') # visible bias self.bvp = parameters.BiasParameters( self, self.v.precision_units, theano.shared(value=self._initial_bias(self.n_visible), name='bvp'), name='bvp') # precision bias self.bh = parameters.BiasParameters( self, self.h, theano.shared(value=self._initial_bias(self.n_hidden), name='bh'), name='bh') # hidden bias
def morbrun1(f1=1, f2=1, v1=1, v2=1, kern = 1): test_set_x = np.array(eval_print1).flatten(order='C') valid_set_x = np.array(eval_print3).flatten(order='C') train_set_x = np.array(eval_print2).flatten(order='C') train_set_x = train_set_x.reshape(np.array(eval_print2).shape[0]*batchm,kern,v1,v2) valid_set_x = valid_set_x.reshape(np.array(eval_print3).shape[0]*batchm,kern,v1,v2) test_set_x = test_set_x.reshape(np.array(eval_print1).shape[0]*batchm,kern,v1,v2) visible_maps = kern hidden_maps = neuron filter_height = f1 filter_width = f2 mb_size = batchm # 1 minibatch print(">> Constructing RBM...") fan_in = visible_maps * filter_height * filter_width """ initial_W = numpy.asarray( self.numpy_rng.uniform( low = - numpy.sqrt(3./fan_in), high = numpy.sqrt(3./fan_in), size = self.filter_shape ), dtype=theano.config.floatX) """ numpy_rng = np.random.RandomState(123) initial_W = np.asarray( numpy_rng.normal( 0, 0.5 / np.sqrt(fan_in), size = (hidden_maps, visible_maps, filter_height, filter_width) ), dtype=theano.config.floatX) initial_bv = np.zeros(visible_maps, dtype = theano.config.floatX) initial_bh = np.zeros(hidden_maps, dtype = theano.config.floatX) shape_info = { 'hidden_maps': hidden_maps, 'visible_maps': visible_maps, 'filter_height': filter_height, 'filter_width': filter_width, 'visible_height': v1, #45+8, 'visible_width': v2, #30, 'mb_size': mb_size } # rbms.SigmoidBinaryRBM(n_visible, n_hidden) rbm = base.RBM() rbm.v = units.BinaryUnits(rbm, name='v') # visibles rbm.h = units.BinaryUnits(rbm, name='h') # hiddens rbm.W = parameters.Convolutional2DParameters(rbm, [rbm.v, rbm.h], theano.shared(value=initial_W, name='W'), name='W', shape_info=shape_info) # one bias per map (so shared across width and height): rbm.bv = parameters.SharedBiasParameters(rbm, rbm.v, 3, 2, theano.shared(value=initial_bv, name='bv'), name='bv') rbm.bh = parameters.SharedBiasParameters(rbm, rbm.h, 3, 2, theano.shared(value=initial_bh, name='bh'), name='bh') initial_vmap = { rbm.v: T.tensor4('v') } # try to calculate weight updates using CD-1 stats print(">> Constructing contrastive divergence updaters...") s = stats.cd_stats(rbm, initial_vmap, visible_units=[rbm.v], hidden_units=[rbm.h], k=5, mean_field_for_stats=[rbm.v], mean_field_for_gibbs=[rbm.v]) lr_cd = 0.001 if indk == -1: lr_cd = 0 umap = {} for var in rbm.variables: pu = var + lr_cd * updaters.CDUpdater(rbm, var, s) umap[var] = pu print(">> Compiling functions...") t = trainers.MinibatchTrainer(rbm, umap) m = monitors.reconstruction_mse(s, rbm.v) e_data = rbm.energy(s['data']).mean() e_model = rbm.energy(s['model']).mean() # train = t.compile_function(initial_vmap, mb_size=32, monitors=[m], name='train', mode=mode) train = t.compile_function(initial_vmap, mb_size=mb_size, monitors=[m, e_data, e_model], name='train', mode=mode) # TRAINING epochs = epoch_cd print(">> Training for %d epochs..." % epochs) for epoch in range(epochs): monitoring_data_train = [(cost, energy_data, energy_model) for cost, energy_data, energy_model in train({ rbm.v: train_set_x })] mses_train, edata_train_list, emodel_train_list = zip(*monitoring_data_train) lay1w = rbm.W.var.get_value() Wl = theano.shared(lay1w) lay1bh = rbm.bh.var.get_value() bhl = theano.shared(lay1bh) return [Wl, bhl]