コード例 #1
0
def interp(inputvar,inputz,outputz,vartype="data",inputt=None,inputp=None):
    """Interpolate an input 3D dataset from an input 3D elevation grid to the output 3D grid
    
    if vartype is set to "p" pressure, it will perform a more sophisticated interpolation, 
        but that requires REAL temperature data
    if vartype is set to "t" temperature, it will convert to potential temperature before
        converting, but that requires pressure data
    """
    # for pressure interpolation, use a temperature dependant vertical shift
    if vartype=="p":
        if inputt==None:
            raise(ValueError("Need Temperature to interpolate pressure"))
        return interp_pressure(inputvar,inputz,outputz,inputt)

    # if we were given real temperature, convert to potential temperature
    if vartype=="t":
        if inputp==None:
            raise(ValueError("Need Pressure data to interpolate temperature"))
            
        else:
            inputvar=inputvar*units.exner(inputp)
    

    output=_vinterp(inputvar,inputz,outputz)
            
            
            
    if vartype=="t":
        inputvar=inputvar/units.exner(inputp)
        print("WARNING!!  Returning potential temperature, not REAL temperature")
        print("  Use interpolated pressure to convert back to REAL temperature")
    
    return output
コード例 #2
0
def interp_multivar(inputvar,outputvar,timestep,inputz,outputz,vartype="data",inputt=None,inputp=None):
    """Interpolate an input 3D dataset from an input 3D elevation grid to the output 3D grid
    
    if vartype is set to "p" pressure, it will perform a more sophisticated interpolation, 
        but that requires REAL temperature data
    if vartype is set to "t" temperature, it will convert to potential temperature before
        converting, but that requires pressure data
    """
    interp_keys=[]
    for vartype in inputvar.keys():
        # for pressure interpolation, use a temperature dependant vertical shift
        if vartype=="p":
            if inputt==None:
                raise(ValueError("Need Temperature to interpolate pressure"))
            outputvar[vartype][timestep]=interp_pressure(inputvar[vartype][timestep],
                                                         inputz, outputz, inputt)
        elif vartype!="z":
            interp_keys.append(vartype)

        # if we were given real temperature, convert to potential temperature
        if vartype=="t":
            if inputp==None:
                raise(ValueError("Need Pressure data to interpolate temperature"))
            
            else:
                inputvar[vartype][timestep]=inputvar[vartype][timestep]*units.exner(inputp)
                
    _vinterp_multivar(inputvar,outputvar,timestep,inputz,outputz,interp_keys)
    
    if "t" in inputvar.keys():
        inputvar["t"][timestep]=inputvar["t"][timestep]/units.exner(inputp)
        print("WARNING!!  Returning potential temperature, not REAL temperature")
        print("  Use interpolated pressure to convert back to REAL temperature")
コード例 #3
0
ファイル: bias_correct.py プロジェクト: cwarecsiro/icar
def load_erai_means(wind_option):
    """docstring for load_erai_means"""
    eraid="erai/"
    varlist=["p","rh","ta","ua","va","z"]
    if (wind_option=="nowind"):
        varlist=["p","rh","ta","z"]
        
    outputdata=[]
    month_mid_point_doy=(start_day_per_month[1:]+np.array(start_day_per_month[:-1]))*0.5
    
    for month in range(1,13):
        curoutput=Bunch(doy=month_mid_point_doy[month-1])
        for v in varlist:
            if v=="ta":
                ta=mygis.read_nc(eraid+"regridded_ERAi_to_cesm_month{0:02}.nc".format(month),v).data
            else:
                curoutput[v]=mygis.read_nc(eraid+"regridded_ERAi_to_cesm_month{0:02}.nc".format(month),v).data
        curoutput["theta"] = ta / units.exner(curoutput.p)
        
        # erai is probably "upside down" so reverse the vertical dimension of all variables
        if curoutput.p[0,0,0]<curoutput.p[-1,0,0]:
            for v in curoutput.keys():
                if v!="doy":
                    curoutput[v]=curoutput[v][::-1,:,:]
        outputdata.append(curoutput)
    return outputdata
コード例 #4
0
ファイル: bias_correct.py プロジェクト: wcurrier/icar
def load_erai_means(wind_option):
    """docstring for load_erai_means"""
    eraid = "erai/"
    varlist = ["p", "rh", "ta", "ua", "va", "z"]
    if (wind_option == "nowind"):
        varlist = ["p", "rh", "ta", "z"]

    outputdata = []
    month_mid_point_doy = (start_day_per_month[1:] +
                           np.array(start_day_per_month[:-1])) * 0.5

    for month in range(1, 13):
        curoutput = Bunch(doy=month_mid_point_doy[month - 1])
        for v in varlist:
            if v == "ta":
                ta = mygis.read_nc(
                    eraid +
                    "regridded_ERAi_to_cesm_month{0:02}.nc".format(month),
                    v).data
            else:
                curoutput[v] = mygis.read_nc(
                    eraid +
                    "regridded_ERAi_to_cesm_month{0:02}.nc".format(month),
                    v).data
        curoutput["theta"] = ta / units.exner(curoutput.p)

        # erai is probably "upside down" so reverse the vertical dimension of all variables
        if curoutput.p[0, 0, 0] < curoutput.p[-1, 0, 0]:
            for v in curoutput.keys():
                if v != "doy":
                    curoutput[v] = curoutput[v][::-1, :, :]
        outputdata.append(curoutput)
    return outputdata
コード例 #5
0
ファイル: bias_correct.py プロジェクト: wcurrier/icar
def vinterp_q(file_name=None):
    """interpolate all variables to a common z level"""
    print("Interpolating quantities")
    if file_name != None:
        file_search = file_name

    qvarlist = ["qv", "theta", "p", "u", "v"]
    qdata = Bunch()
    print("Loading data")
    t0 = time.time()
    for varname in qvarlist:
        print(varname)
        qdata[varname] = mygis.read_files(file_search, varname, axis=0)

    print("z")
    qdata["z"] = mygis.read_files(file_search, "z", axis=0)
    mean_z = mygis.read_nc("annual_mean_z.nc", "z").data
    print("  Reading data took {0:6.2f} seconds".format((time.time() - t0)))

    t0 = time.time()
    temperature = qdata.theta * units.exner(qdata.p)
    print("  Temperature conversion took {0:6.2f} seconds".format(
        (time.time() - t0)))
    t0 = time.time()
    print("Computing RH")
    qdata["rh"] = compute_rh(qdata, temperature)
    qvarlist.append("rh")
    print("  RH calculation took {0:6.2f} seconds".format((time.time() - t0)))

    print("Interpolating")
    qout = Bunch()
    for varname in qvarlist:
        qout[varname] = np.zeros(qdata[varname].shape)

    t0 = time.time()
    nsteps = qdata.z.shape[0]
    for i in range(nsteps):
        vertical_interp.interp_multivar(qdata,
                                        qout,
                                        i,
                                        qdata.z[i],
                                        mean_z,
                                        vartype=varname,
                                        inputt=temperature[i],
                                        inputp=qdata.p[i])
    print("  Interpolation took {0:6.2f} seconds per timestep".format(
        (time.time() - t0) / nsteps))

    print("Writing data")
    write_interpolated_6hrly(qout, mean_z, file_name)
コード例 #6
0
ファイル: bias_correct.py プロジェクト: cwarecsiro/icar
def interp_era_to_cesm(erai,cesm):
    """docstring for interp_era_to_cesm"""
    print("Monthly vertical interpolation")
    varlist=erai[0].keys() #["p","rh","theta","ua","va"]
    mean_z=cesm[0].z
    inputp=np.zeros(erai[0].p.shape)
    for i in range(len(erai)):
        print("Month {}".format(i+1))
        inputp[:]=erai[i].p[:]
        temperature=erai[i].theta * units.exner(inputp)
        for v in varlist:
            if (v!="doy") and (v!="z"):
                erai[i][v]=vertical_interp.interp(erai[i][v], erai[i]["z"], mean_z,
                                                  vartype=v,  inputt=temperature, inputp=inputp)
        erai[i]["z"]=mean_z
    
    return erai
コード例 #7
0
ファイル: bias_correct.py プロジェクト: cwarecsiro/icar
def vinterp_q(file_name=None):
    """interpolate all variables to a common z level"""
    print("Interpolating quantities")
    if file_name!=None:
        file_search=file_name
    
    qvarlist=["qv","theta","p","u","v"]
    qdata=Bunch()
    print("Loading data")
    t0=time.time()
    for varname in qvarlist:
        print(varname)
        qdata[varname]=mygis.read_files(file_search,varname,axis=0)
    
    print("z")
    qdata["z"]=mygis.read_files(file_search,"z",axis=0)
    mean_z=mygis.read_nc("annual_mean_z.nc","z").data
    print("  Reading data took {0:6.2f} seconds".format((time.time()-t0)))
    
    t0=time.time()
    temperature=qdata.theta*units.exner(qdata.p)
    print("  Temperature conversion took {0:6.2f} seconds".format((time.time()-t0)))
    t0=time.time()
    print("Computing RH")
    qdata["rh"]=compute_rh(qdata,temperature)
    qvarlist.append("rh")
    print("  RH calculation took {0:6.2f} seconds".format((time.time()-t0)))
    
    print("Interpolating")
    qout=Bunch()
    for varname in qvarlist:
        qout[varname]=np.zeros(qdata[varname].shape)
    
    t0=time.time()
    nsteps=qdata.z.shape[0]
    for i in range(nsteps):
        vertical_interp.interp_multivar(qdata,qout,i, qdata.z[i], mean_z,vartype=varname,
                                        inputt=temperature[i],inputp=qdata.p[i])
    print("  Interpolation took {0:6.2f} seconds per timestep".format((time.time()-t0)/nsteps))
                
    print("Writing data")
    write_interpolated_6hrly(qout,mean_z,file_name)
コード例 #8
0
ファイル: bias_correct.py プロジェクト: wcurrier/icar
def apply_bias_correction(wind_option):
    """docstring for  apply_bias_correction"""
    varlist = ["theta", "p", "u", "v", "rh"]
    if wind_option == "nowind": print("Skipping U and V bias correction.")
    biases = load_biases(wind_option)
    current_files = glob.glob("cesm_*.nc")
    current_files.sort()
    for f in current_files:
        print("Bias Correcting : " + f)
        output_data = mygis.Dataset(f, mode="a")
        for v in varlist:
            print("  Variable : " + v)
            try:
                d = mygis.read_nc("vinterpolated/" + v + "_" + f, v).data
            except:
                d = mygis.read_nc(v + "_" + f, v).data

            if (wind_option == "nowind") and ((v == "u") or (v == "v")):
                pass
            if (wind_option == "meanwind") and ((v == "u") or (v == "v")):
                for i in range(d.shape[0]):
                    windbias = biases[int(np.round(i /
                                                   float(times_per_day)))][v]
                    for j in range(d.shape[1]):
                        d[i, j, ...] -= np.mean(windbias[j, ...])
            else:
                for i in range(d.shape[0]):
                    d[i, ...] -= biases[int(np.round(i /
                                                     float(times_per_day)))][v]

            if v == "rh":
                d[d < 1e-10] = 1e-10
                d[d > 100] = 100
                rh = d
            else:
                output_data.variables[v][:] = d

        p = output_data.variables["p"][:] / 100.0  # convert to mb
        t = output_data.variables["theta"][:] * units.exner(p)
        output_data.variables["qv"][:] = units.rh2sh(t, p, rh)
        output_data.variables["z"] = biases[0]["z"][np.newaxis, :, :, :]
        output_data.close()
コード例 #9
0
ファイル: bias_correct.py プロジェクト: cwarecsiro/icar
def apply_bias_correction(wind_option):
    """docstring for  apply_bias_correction"""
    varlist=["theta","p","u","v","rh"]
    if wind_option=="nowind": print("Skipping U and V bias correction.")
    biases=load_biases(wind_option)
    current_files=glob.glob("cesm_*.nc")
    current_files.sort()
    for f in current_files:
        print("Bias Correcting : "+f)
        output_data=mygis.Dataset(f,mode="a")
        for v in varlist:
            print("  Variable : "+v)
            try:
                d=mygis.read_nc("vinterpolated/"+v+"_"+f,v).data
            except:
                d=mygis.read_nc(v+"_"+f,v).data
            
            if (wind_option=="nowind") and ((v=="u") or (v=="v")):
                pass
            if (wind_option=="meanwind") and ((v=="u") or (v=="v")):
                for i in range(d.shape[0]):
                    windbias=biases[int(np.round(i/float(times_per_day)))][v]
                    for j in range(d.shape[1]):
                        d[i,j,...]-=np.mean(windbias[j,...])
            else:
                for i in range(d.shape[0]):
                    d[i,...]-=biases[int(np.round(i/float(times_per_day)))][v]
                
            
            if v=="rh":
                d[d<1e-10]=1e-10
                d[d>100]=100
                rh=d
            else:
                output_data.variables[v][:]=d
        
        p=output_data.variables["p"][:]/100.0 # convert to mb
        t=output_data.variables["theta"][:] * units.exner(p)
        output_data.variables["qv"][:]=units.rh2sh(t,p,rh)
        output_data.variables["z"]=biases[0]["z"][np.newaxis,:,:,:]
        output_data.close()
コード例 #10
0
ファイル: bias_correct.py プロジェクト: wcurrier/icar
def interp_era_to_cesm(erai, cesm):
    """docstring for interp_era_to_cesm"""
    print("Monthly vertical interpolation")
    varlist = erai[0].keys()  #["p","rh","theta","ua","va"]
    mean_z = cesm[0].z
    inputp = np.zeros(erai[0].p.shape)
    for i in range(len(erai)):
        print("Month {}".format(i + 1))
        inputp[:] = erai[i].p[:]
        temperature = erai[i].theta * units.exner(inputp)
        for v in varlist:
            if (v != "doy") and (v != "z"):
                erai[i][v] = vertical_interp.interp(erai[i][v],
                                                    erai[i]["z"],
                                                    mean_z,
                                                    vartype=v,
                                                    inputt=temperature,
                                                    inputp=inputp)
        erai[i]["z"] = mean_z

    return erai