def _parse_parameter_file(self): # hardcoded for now # These should be explicitly obtained from the file, but for now that # will wait until a reorganization of the source tree and better # generalization. self.dimensionality = 3 self.refine_by = 2 self.parameters["HydroMethod"] = "ramses" self.parameters["Time"] = 1.0 # default unit is 1... # We now execute the same logic Oliver's code does rheader = {} def read_rhs(f, cast): line = f.readline().replace("\n", "") p, v = line.split("=") rheader[p.strip()] = cast(v.strip()) with open(self.parameter_filename) as f: for _ in range(6): read_rhs(f, int) f.readline() for _ in range(11): read_rhs(f, float) f.readline() read_rhs(f, str) # This next line deserves some comment. We specify a min_level that # corresponds to the minimum level in the RAMSES simulation. RAMSES is # one-indexed, but it also does refer to the *oct* dimensions -- so # this means that a levelmin of 1 would have *1* oct in it. So a # levelmin of 2 would have 8 octs at the root mesh level. self.min_level = rheader["levelmin"] - 1 # Now we read the hilbert indices self.hilbert_indices = {} if rheader["ordering type"] == "hilbert": f.readline() # header for _ in range(rheader["ncpu"]): dom, mi, ma = f.readline().split() self.hilbert_indices[int(dom)] = (float(mi), float(ma)) if rheader["ordering type"] != "hilbert" and self._bbox is not None: raise NotImplementedError( "The ordering %s is not compatible with the `bbox` argument." % rheader["ordering type"] ) self.parameters.update(rheader) self.domain_left_edge = np.zeros(3, dtype="float64") self.domain_dimensions = np.ones(3, dtype="int32") * 2 ** (self.min_level + 1) self.domain_right_edge = np.ones(3, dtype="float64") # This is likely not true, but it's not clear # how to determine the boundary conditions self._periodicity = (True, True, True) if self.force_cosmological is not None: is_cosmological = self.force_cosmological else: # These conditions seem to always be true for non-cosmological datasets is_cosmological = not ( rheader["time"] >= 0 and rheader["H0"] == 1 and rheader["aexp"] == 1 ) if not is_cosmological: self.cosmological_simulation = 0 self.current_redshift = 0 self.hubble_constant = 0 self.omega_matter = 0 self.omega_lambda = 0 else: self.cosmological_simulation = 1 self.current_redshift = (1.0 / rheader["aexp"]) - 1.0 self.omega_lambda = rheader["omega_l"] self.omega_matter = rheader["omega_m"] self.hubble_constant = rheader["H0"] / 100.0 # This is H100 force_max_level, convention = self._force_max_level if convention == "yt": force_max_level += self.min_level + 1 self.max_level = min(force_max_level, rheader["levelmax"]) - self.min_level - 1 if self.cosmological_simulation == 0: self.current_time = self.parameters['time'] else : self.cosmology=FlatLambdaCDM(H0=100*self.hubble_constant,Om0=self.omega_matter) self.current_time=unyt_quantity.from_astropy(self.cosmology.age(self.current_redshift)) ''' self.tau_frw, self.t_frw, self.dtau, self.n_frw, self.time_tot = friedman( self.omega_matter, self.omega_lambda, 1.0 - self.omega_matter - self.omega_lambda, ) age = self.parameters["time"] iage = 1 + int(10.0 * age / self.dtau) iage = np.min([iage, self.n_frw // 2 + (iage - self.n_frw // 2) // 10]) try: self.time_simu = self.t_frw[iage] * (age - self.tau_frw[iage - 1]) / ( self.tau_frw[iage] - self.tau_frw[iage - 1] ) + self.t_frw[iage - 1] * (age - self.tau_frw[iage]) / ( self.tau_frw[iage - 1] - self.tau_frw[iage] ) self.current_time = ( (self.time_tot + self.time_simu) / (self.hubble_constant * 1e7 / 3.08e24) / self.parameters["unit_t"] ) ''' if self.num_groups > 0: self.group_size = rheader["ncpu"] // self.num_groups # Read namelist.txt file (if any) self.read_namelist()
simulation_lines = [] simulation_labels = [] fig, ax = plt.subplots() ax.loglog() for snapshot_filename, stats_filename, name in zip(snapshot_filenames, stats_filenames, names): data = load_statistics(stats_filename) snapshot = load(snapshot_filename) boxsize = snapshot.metadata.boxsize.to("Mpc") box_volume = boxsize[0] * boxsize[1] * boxsize[2] cosmo = snapshot.metadata.cosmology rho_crit0 = unyt_quantity.from_astropy(cosmo.critical_density0) rho_crit0 = rho_crit0.to("Msun / Mpc**3") # a, Redshift, SFR scale_factor = data.a redshift = data.z H2_mass = data.gas_h2_mass.to("Msun") H2_mass_density = H2_mass / box_volume # High z-order as we always want these to be on top of the observations simulation_lines.append( ax.plot(scale_factor, H2_mass_density, zorder=10000)[0]) simulation_labels.append(name) # Observational data plotting S17_data = np.genfromtxt(