def add_dataset( dset_fp, list_ids, up3d_fp, # pylint: disable=too-many-locals, too-many-arguments, too-many-statements, too-many-branches, unused-argument train_dset, val_dset, test_dset, train_spec, val_spec, test_spec, target_person_size, landmarks, train_crop, test_crop, train_steps_x, train_steps_y, running_idx, only_missing=False): """Add a dataset to the collection.""" test_ids = [int(id_[1:6]) for id_ in test_spec] train_ids = [int(id_[1:6]) for id_ in train_spec] val_ids = [int(id_[1:6]) for id_ in val_spec] LOGGER.info("Split: %d train, %d val, %d test.", len(train_ids), len(val_ids), len(test_ids)) LOGGER.info("Writing dataset...") for im_idx in tqdm.tqdm(train_ids + val_ids + test_ids): image = scipy.misc.imread( path.join(up3d_fp, '%05d_image.png' % (im_idx))) with open(path.join(up3d_fp, '%05d_fit_crop_info.txt' % (im_idx)), 'r') as inf: cropinfo = [int(val) for val in inf.readline().strip().split()] fac_y = cropinfo[0] / float(cropinfo[3] - cropinfo[2]) fac_x = cropinfo[1] / float(cropinfo[5] - cropinfo[4]) rec_scale = np.mean([fac_x, fac_y]) rec_x = cropinfo[4] rec_y = cropinfo[2] assert image.ndim == 3 out_exists = (path.exists( path.join(dset_fp, '%05d_image.png' % (running_idx))) and path.exists( path.join(dset_fp, '%05d_ann_vis.png' % (running_idx)))) joints = np.load(path.join(up3d_fp, '%05d_joints.npy' % (im_idx))) joints = np.vstack((joints, np.all(joints > 0, axis=0)[None, :])) person_size = robust_person_size(joints) norm_factor = float(target_person_size) / person_size joints[:2, :] *= norm_factor image = scipy.misc.imresize(image, norm_factor, interp='bilinear') if im_idx in test_ids: crop = test_crop else: crop = train_crop if image.shape[0] > crop or image.shape[1] > crop: LOGGER.debug( "Image (original %d, here %d) too large (%s)! Cropping...", im_idx, running_idx, str(image.shape[:2])) person_center = np.mean(joints[:2, joints[2, :] == 1], axis=1) crop_y, crop_x = get_crop(image, person_center, crop) image = image[crop_y[0]:crop_y[1], crop_x[0]:crop_x[1], :] assert image.shape[0] == crop or image.shape[1] == crop, ( "Error cropping image (original %d, here %d)!" % (im_idx, running_idx)) else: crop_x = [0, image.shape[1]] crop_y = [0, image.shape[0]] assert image.shape[0] <= crop and image.shape[ 1] <= crop and image.shape[2] == 3, ( "Wrong image shape (original %d, here %d)!" % (im_idx, running_idx)) if not (only_missing and out_exists): if im_idx in test_ids: steps_x = 1 steps_y = 1 else: steps_x = train_steps_x steps_y = train_steps_y LOGGER.debug('Crop infos: x: %s, y: %s', str(crop_x), str(crop_y)) landmark_pos_list, full_parameter_list = get_landmark_positions( path.join(up3d_fp, '%05d_body.pkl' % (im_idx)), (image.shape[1], image.shape[0]), (cropinfo[1], cropinfo[0]), landmarks, trans=( -crop_x[0] - rec_x, # pylint: disable=line-too-long -crop_y[0] - rec_y), # pylint: disable=line-too-long scale=norm_factor / rec_scale, # pylint: disable=line-too-long steps_x=steps_x, steps_y=steps_y) if im_idx in train_ids: append_dset = train_dset elif im_idx in val_ids: append_dset = val_dset elif im_idx in test_ids: append_dset = test_dset for rend_idx, (landmark_pos, full_parameters) in enumerate( # pylint: disable=unused-variable zip(landmark_pos_list, full_parameter_list)): append_dset.resize(append_dset.shape[0] + 1, axis=0) append_dset[-1, :] = landmark_pos + full_parameters running_idx += 1 return running_idx
def add_dataset( dset_fp, dset_fromroot, list_ids, up3d_fp, # pylint: disable=too-many-locals, too-many-arguments, too-many-statements, too-many-branches train_list_f, val_list_f, train_val_list_f, test_list_f, scale_f, train_spec, val_spec, test_spec, target_person_size, landmarks, train_crop, test_crop, running_idx, only_missing=False, with_rlswap=True, write_gtjoints_as_lm=False, human_annotations=False): """Add a dataset to the collection.""" test_ids = [int(id_[1:6]) for id_ in test_spec] train_ids = [int(id_[1:6]) for id_ in train_spec] val_ids = [int(id_[1:6]) for id_ in val_spec] LOGGER.info("Split: %d train, %d val, %d test.", len(train_ids), len(val_ids), len(test_ids)) LOGGER.info("Writing dataset...") for im_idx in tqdm.tqdm(train_ids + val_ids + test_ids): image = scipy.misc.imread( path.join(up3d_fp, '%05d_image.png' % (im_idx))) with open(path.join(up3d_fp, '%05d_fit_crop_info.txt' % (im_idx)), 'r') as inf: cropinfo = [int(val) for val in inf.readline().strip().split()] assert image.ndim == 3 out_exists = (path.exists( path.join(dset_fp, '%05d_image.png' % (running_idx))) and path.exists( path.join(dset_fp, '%05d_ann_vis.png' % (running_idx)))) if with_rlswap and im_idx not in test_ids: out_exists = out_exists and (path.exists( path.join(dset_fp, '%05d_image.png' % (running_idx + 1))) and path.exists( path.join(dset_fp, '%05d_ann_vis.png' % (running_idx + 1)))) if not (only_missing and out_exists or write_gtjoints_as_lm): if human_annotations: landmark_pos = np.load( path.join(up3d_fp, '%05d_joints.npy' % (im_idx))) else: landmark_pos = get_landmark_positions( path.join(up3d_fp, '%05d_body.pkl' % (im_idx)), (cropinfo[1], cropinfo[0]), landmarks) fac_y = cropinfo[0] / float(cropinfo[3] - cropinfo[2]) fac_x = cropinfo[1] / float(cropinfo[5] - cropinfo[4]) landmark_pos[:2, :] /= np.mean([fac_x, fac_y]) landmark_pos[0, :] += cropinfo[4] landmark_pos[1, :] += cropinfo[2] joints = np.load(path.join(up3d_fp, '%05d_joints.npy' % (im_idx))) joints = np.vstack((joints, np.all(joints > 0, axis=0)[None, :])) person_size = robust_person_size(joints) norm_factor = float(target_person_size) / person_size joints[:2, :] *= norm_factor if not (only_missing and out_exists or write_gtjoints_as_lm): landmark_pos[:2, :] *= norm_factor if write_gtjoints_as_lm: landmark_pos = joints.copy() image = scipy.misc.imresize(image, norm_factor, interp='bilinear') if im_idx in test_ids: crop = test_crop else: crop = train_crop if image.shape[0] > crop or image.shape[1] > crop: LOGGER.debug( "Image (original %d, here %d) too large (%s)! Cropping...", im_idx, running_idx, str(image.shape[:2])) person_center = np.mean(joints[:2, joints[2, :] == 1], axis=1) crop_y, crop_x = get_crop(image, person_center, crop) image = image[crop_y[0]:crop_y[1], crop_x[0]:crop_x[1], :] landmark_pos[0, :] -= crop_x[0] landmark_pos[1, :] -= crop_y[0] assert image.shape[0] == crop or image.shape[1] == crop, ( "Error cropping image (original %d, here %d)!" % (im_idx, running_idx)) assert image.shape[0] <= crop and image.shape[ 1] <= crop and image.shape[2] == 3, ( "Wrong image shape (original %d, here %d)!" % (im_idx, running_idx)) vis_im = vs.visualize_pose(image, landmark_pos, scale=1.) if not (only_missing and out_exists): scipy.misc.imsave( path.join(dset_fp, '%05d_image.png' % (running_idx)), image) scipy.misc.imsave( path.join(dset_fp, '%05d_ann_vis.png' % (running_idx)), vis_im) if with_rlswap and im_idx not in test_ids: if landmark_pos.shape[1] == 14: landmark_pos_swapped = landmark_pos[:, rlswap_lsp] else: landmark_pos_swapped = landmark_pos[:, rlswap_landmarks_91] landmark_pos_swapped[ 0, :] = image.shape[1] - landmark_pos_swapped[0, :] image_swapped = image[:, ::-1, :] # Use core visualization for 14 joints. vis_im_swapped = vs.visualize_pose(image_swapped, landmark_pos_swapped, scale=1) if not (only_missing and out_exists): scipy.misc.imsave( path.join(dset_fp, '%05d_image.png' % (running_idx + 1)), image_swapped) scipy.misc.imsave( path.join(dset_fp, '%05d_ann_vis.png' % (running_idx + 1)), vis_im_swapped) list_fs = [] list_id_ids = [] if im_idx in train_ids: list_fs.append(train_val_list_f) list_id_ids.append(2) list_fs.append(train_list_f) list_id_ids.append(0) elif im_idx in val_ids: list_fs.append(train_val_list_f) list_id_ids.append(2) list_fs.append(val_list_f) list_id_ids.append(1) elif im_idx in test_ids: list_fs.append(test_list_f) list_id_ids.append(3) for list_f, list_id_idx in zip(list_fs, list_id_ids): # pylint: disable=bad-continuation list_f.write("""# %d %s 3 %d %d %d """ % (list_ids[list_id_idx], path.join('/' + dset_fromroot, '%05d_image.png' % (running_idx)), image.shape[0], image.shape[1], landmark_pos.shape[1])) for landmark_idx, landmark_point in enumerate(landmark_pos.T): list_f.write("%d %d %d\n" % (landmark_idx + 1, int( landmark_point[0]), int(landmark_point[1]))) list_f.flush() list_ids[list_id_idx] += 1 scale_f.write("%05d_image.png %f\n" % (running_idx, norm_factor)) scale_f.flush() running_idx += 1 if with_rlswap and im_idx not in test_ids: for list_f, list_id_idx in zip(list_fs, list_id_ids): # pylint: disable=bad-continuation list_f.write("""# %d %s 3 %d %d %d """ % (list_ids[list_id_idx], path.join('/' + dset_fromroot, '%05d_image.png' % (running_idx)), image.shape[0], image.shape[1], landmark_pos.shape[1])) for landmark_idx, landmark_point in enumerate( landmark_pos_swapped.T): list_f.write( "%d %d %d\n" % (landmark_idx + 1, int( landmark_point[0]), int(landmark_point[1]))) list_f.flush() list_ids[list_id_idx] += 1 scale_f.write("%05d_image.png %f\n" % (running_idx, norm_factor)) scale_f.flush() running_idx += 1 return running_idx
def add_dataset(dset_fp, dset_rel_fp, up3d_fp, # pylint: disable=too-many-locals, too-many-arguments, too-many-statements, too-many-branches train_list_f, val_list_f, test_list_f, train_spec, val_spec, test_spec, target_person_size, landmarks, partspec, crop, running_idx, only_missing=False): """Add a dataset to the collection.""" test_ids = [int(id_[1:6]) for id_ in test_spec] train_ids = [int(id_[1:6]) for id_ in train_spec] val_ids = [int(id_[1:6]) for id_ in val_spec] ids_list = sorted(train_ids + val_ids + test_ids) LOGGER.info("Split: %d train, %d val, %d test.", len(train_ids), len(val_ids), len(test_ids)) LOGGER.info("Writing dataset...") for im_idx in tqdm.tqdm(ids_list): image = scipy.misc.imread(path.join(up3d_fp, '%05d_image.png' % (im_idx))) with open(path.join(up3d_fp, '%05d_fit_crop_info.txt' % (im_idx)), 'r') as inf: cropinfo = [int(val) for val in inf.readline().strip().split()] assert image.ndim == 3 out_exists = (path.exists(path.join(dset_fp, '%05d_image.png' % (running_idx))) and path.exists(path.join(dset_fp, '%05d_ann.png' % (running_idx))) and path.exists(path.join(dset_fp, '%05d_ann_vis.png' % (running_idx))) and path.exists(path.join(dset_fp, '%05d_render.png' % (running_idx))) and path.exists(path.join(dset_fp, '%05d_render_light.png' % (running_idx)))) if not (only_missing and out_exists): rendering = uncrop(render_body_impl(path.join(up3d_fp, '%05d_body.pkl' % (im_idx)), resolution=(cropinfo[1], cropinfo[0]), quiet=True, use_light=False)[0], image.shape[:2], cropinfo) rendering_l = uncrop(render_body_impl(path.join(up3d_fp, '%05d_body.pkl' % (im_idx)), resolution=(cropinfo[1], cropinfo[0]), quiet=True, use_light=True)[0], image.shape[:2], cropinfo) joints = np.load(path.join(up3d_fp, '%05d_joints.npy' % (im_idx))) joints = np.vstack((joints, np.all(joints > 0, axis=0)[None, :])) person_size = robust_person_size(joints) norm_factor = float(target_person_size) / person_size landmark_pos = get_landmark_positions(path.join(up3d_fp, '%05d_body.pkl' % (im_idx)), (cropinfo[1], cropinfo[0]), landmarks) fac_y = cropinfo[0] / float(cropinfo[3] - cropinfo[2]) fac_x = cropinfo[1] / float(cropinfo[5] - cropinfo[4]) landmark_pos[:2, :] /= np.mean([fac_x, fac_y]) landmark_pos[0, :] += cropinfo[4] landmark_pos[1, :] += cropinfo[2] landmark_pos[:2, :] *= norm_factor if not (only_missing and out_exists): image = scipy.misc.imresize(image, norm_factor, interp='bilinear') rendering = scipy.misc.imresize(rendering, norm_factor, interp='nearest') rendering_l = scipy.misc.imresize(rendering_l, norm_factor, interp='bilinear') if image.shape[0] > crop or image.shape[1] > crop: LOGGER.debug("Image (original %d, here %d) too large (%s)! Cropping...", im_idx, running_idx, str(image.shape[:2])) person_center = np.mean(joints[:2, joints[2, :] == 1], axis=1) * norm_factor crop_y, crop_x = get_crop(image, person_center, crop) image = image[crop_y[0]:crop_y[1], crop_x[0]:crop_x[1], :] rendering = rendering[crop_y[0]:crop_y[1], crop_x[0]:crop_x[1], :] rendering_l = rendering_l[crop_y[0]:crop_y[1], crop_x[0]:crop_x[1], :] landmark_pos[0, :] -= crop_x[0] landmark_pos[1, :] -= crop_y[0] assert image.shape[0] == crop or image.shape[1] == crop, ( "Error cropping image (original %d, here %d)!" % (im_idx, running_idx)) assert image.shape[0] <= crop and image.shape[1] <= crop and image.shape[2] == 3, ( "Wrong image shape (original %d, here %d)!" % (im_idx, running_idx)) class_groups = six_region_groups if partspec == '6' else None annotation = regions_to_classes(rendering, class_groups, warn_id=str(im_idx)) if partspec == '1': annotation = (annotation > 0).astype('uint8') assert np.max(annotation) <= int(partspec), ( "Wrong annotation value (original %d, here %d): %s!" % ( im_idx, running_idx, str(np.unique(annotation)))) if running_idx == 0: assert np.max(annotation) == int(partspec), ( "Probably an error in the number of parts!") pose_vis_im = vs.visualize_pose(cv2.cvtColor(annotation*8, cv2.COLOR_GRAY2RGB), landmark_pos, scale=1.) scipy.misc.imsave(path.join(dset_fp, '%05d_image.png' % (running_idx)), image) scipy.misc.imsave(path.join(dset_fp, '%05d_ann.png' % (running_idx)), annotation) scipy.misc.imsave(path.join(dset_fp, '%05d_seg_ann_vis.png' % (running_idx)), apply_colormap(annotation, vmax=int(partspec))) # scipy.misc.imsave(path.join(dset_fp, '%05d_render.png' % (running_idx)), rendering) scipy.misc.imsave(path.join(dset_fp, '%05d_render_light.png' % (running_idx)), rendering_l) # pylint: disable=line-too-long scipy.misc.imsave(path.join(dset_fp, '%05d_pose_ann_vis.png' % (running_idx)), pose_vis_im) landmark_pos = np.concatenate((landmark_pos, joints[2][None, :])) np.save(str(path.join(dset_fp, '%05d_joints.npy' % (running_idx))), landmark_pos, allow_pickle=False) if im_idx in train_ids: list_f = train_list_f elif im_idx in val_ids: list_f = val_list_f elif im_idx in test_ids: list_f = test_list_f list_f.write("/%s/%05d_image.png /%s/%05d_ann.png %f\n" % ( dset_rel_fp, running_idx, dset_rel_fp, running_idx, norm_factor)) list_f.flush() running_idx += 1 return running_idx