コード例 #1
0
def check_iris(presort, subsample, sample_weight):
    # Check consistency on dataset iris.
    clf = GradientBoostingClassifier(n_estimators=100,
                                     loss='deviance',
                                     random_state=1,
                                     subsample=subsample,
                                     presort=presort)
    clf.fit(iris.data, iris.target, sample_weight=sample_weight)
    score = clf.score(iris.data, iris.target)
    assert_greater(score, 0.9)

    leaves = clf.apply(iris.data)
    assert_equal(leaves.shape, (150, 100, 3))
コード例 #2
0
def check_classification_toy(presort, loss):
    # Check classification on a toy dataset.
    clf = GradientBoostingClassifier(loss=loss,
                                     n_estimators=10,
                                     random_state=1,
                                     presort=presort)

    assert_raises(ValueError, clf.predict, T)

    clf.fit(X, y)
    assert_array_equal(clf.predict(T), true_result)
    assert_equal(10, len(clf.estimators_))

    deviance_decrease = (clf.train_score_[:-1] - clf.train_score_[1:])
    assert_true(np.any(deviance_decrease >= 0.0))

    leaves = clf.apply(X)
    assert_equal(leaves.shape, (6, 10, 1))