コード例 #1
0
def test_federal_account_update():
    """Test federal account updates from underlying TAS records."""

    fa = mommy.make(FederalAccount,
                    id=1,
                    agency_identifier="abc",
                    main_account_code="0987",
                    account_title="Fancy duck")
    tas1 = mommy.make(
        TreasuryAppropriationAccount,
        federal_account_id=1,
        agency_id="abc",
        main_account_code="0987",
        account_title="Fancy duck",
    )
    tas2 = mommy.make(
        TreasuryAppropriationAccount,
        agency_id="abc",
        main_account_code="0987",
        account_title="Fancy goose",
        ending_period_of_availability="2020",
    )

    # run the federal account update process and check results
    update_federal_accounts()

    # federal_account fk of tas2 has been updated
    assert (TreasuryAppropriationAccount.objects.get(
        treasury_account_identifier=tas2.treasury_account_identifier).
            federal_account == fa)
    # federal_account fk of tas1 is unchanged
    assert (TreasuryAppropriationAccount.objects.get(
        treasury_account_identifier=tas1.treasury_account_identifier).
            federal_account_id == 1)
コード例 #2
0
def test_federal_account_update_subset():
    """Test ability to update federal_account FK on a subset of TAS records."""

    fa = mommy.make(FederalAccount,
                    id=1,
                    agency_identifier="abc",
                    main_account_code="0987",
                    account_title="Fancy duck")
    mommy.make(TreasuryAppropriationAccount,
               agency_id="abc",
               main_account_code="0987",
               _quantity=4)

    # send two TAS records to the federal account update process and check results
    update_federal_accounts((
        TreasuryAppropriationAccount.objects.first(
        ).treasury_account_identifier,
        TreasuryAppropriationAccount.objects.last().
        treasury_account_identifier,
    ))

    # only two of the four TAS records were updated with a foreign key, even
    # though all four map back to the same federal account
    assert TreasuryAppropriationAccount.objects.filter(
        federal_account__isnull=True).count() == 2
    # the other two records have federal account FKs
    assert TreasuryAppropriationAccount.objects.filter(
        federal_account=fa).count() == 2
コード例 #3
0
    def handle(self, *args, **options):
        field_map = {
            "treasury_account_identifier": "ACCT_NUM",
            "account_title": "GWA_TAS NAME",
            "reporting_agency_id": "Agency AID",
            "reporting_agency_name": "Agency Name",
            "budget_bureau_code": "ADMIN_ORG",
            "budget_bureau_name": "Admin Org Name",
            "fr_entity_code": "FR Entity Type Code",
            "fr_entity_description": "FR Entity Description",
            "budget_function_code": "Function Code",
            "budget_function_title": "Function Description",
            "budget_subfunction_code": "Sub Function Code",
            "budget_subfunction_title": "Sub Function Description"
        }

        value_map = {
            "data_source":
            "USA",
            "tas_rendering_label":
            self.generate_tas_rendering_label,
            "allocation_transfer_agency_id":
            lambda row: row["ATA"].strip(),
            "agency_id":
            lambda row: row["AID"].strip(),
            "beginning_period_of_availability":
            lambda row: row["BPOA"].strip(),
            "ending_period_of_availability":
            lambda row: row["EPOA"].strip(),
            "availability_type_code":
            lambda row: row["A"].strip(),
            "main_account_code":
            lambda row: row["MAIN"].strip(),
            "sub_account_code":
            lambda row: row["SUB"].strip(),
            "awarding_toptier_agency":
            lambda row: ToptierAgency.objects.filter(cgac_code=row[
                "ATA"].strip()).order_by("fpds_code").first(),
            "funding_toptier_agency":
            lambda row: ToptierAgency.objects.filter(cgac_code=row[
                "AID"].strip()).order_by("fpds_code").first()
        }

        loader = ThreadedDataLoader(
            model_class=TreasuryAppropriationAccount,
            field_map=field_map,
            value_map=value_map,
            collision_field='treasury_account_identifier',
            collision_behavior='update',
            pre_row_function=self.skip_and_remove_financing_tas)
        loader.load_from_file(options['file'][0])

        # update TAS fk relationships to federal accounts
        remove_empty_federal_accounts()
        update_federal_accounts()
        insert_federal_accounts()
コード例 #4
0
    def handle(self, *args, **options):
        try:
            with Timer("Loading TAS from {}".format(options["location"]
                                                    or "Broker")):
                if options["location"]:
                    self.csv_tas_loader(options["location"])
                else:
                    call_command("run_sql", "-f", TAS_SQL_PATH)

            # Match funding toptiers by FREC if they didn't match by AID
            with Timer(
                    "Matching Funding Toptier Agency where AID didn't match"):
                unmapped_funding_agencies = TreasuryAppropriationAccount.objects.filter(
                    funding_toptier_agency=None)
                match_count = 0
                msg_str = "=== Found {} unmatched funding agencies across all TAS objects. ==="
                logger.info(msg_str.format(unmapped_funding_agencies.count()))
                for next_tas in unmapped_funding_agencies:
                    frec_match = ToptierAgency.objects.filter(
                        toptier_code=next_tas.fr_entity_code).first()
                    if frec_match:
                        match_count += 1
                        logger.info(
                            "   Matched unknown funding agency for TAS {} with FREC {}"
                            .format(next_tas.tas_rendering_label,
                                    next_tas.fr_entity_code))
                        next_tas.funding_toptier_agency = frec_match
                        next_tas.save()

                logger.info(
                    "=== Updated {} Funding Toptier Agencies with a FREC agency. ==="
                    .format(match_count))

            # update TAS fk relationships to federal accounts
            with Timer("Updated TAS FK relationships to Federal Accounts"):
                logger.info(
                    "=== Updating TAS FK relationships to Federal Accounts ==="
                )
                updates = update_federal_accounts()
                logger.info(
                    "   Updated {} Federal Account Rows".format(updates))
                inserts = insert_federal_accounts()
                logger.info(
                    "   Created {} Federal Account Rows".format(inserts))
                deletes = remove_empty_federal_accounts()
                logger.info(
                    "   Removed {} Federal Account Rows".format(deletes))

            logger.info("=== TAS loader finished successfully! ===")

        except Exception as e:
            logger.error(e)
            logger.error("=== TAS loader failed ===")
            sys.exit(1)
コード例 #5
0
    def handle(self, *args, **options):
        try:
            call_command("run_sql", "-f", TAS_SQL_PATH)

            # Match funding toptiers by FREC if they didn't match by AID
            unmapped_funding_agencies = TreasuryAppropriationAccount.objects.filter(
                funding_toptier_agency=None)
            match_count = 0
            msg_str = "\n=== Found {} unmatched funding agencies across all TAS objects. ==="
            logger.info(msg_str.format(unmapped_funding_agencies.count()))
            for next_tas in unmapped_funding_agencies:
                # CGAC code is a combination of FRECs and CGACs. It will never be empty and it will always
                # be unique in ToptierAgencies; this should be safe to do.
                frec_match = ToptierAgency.objects.filter(
                    cgac_code=next_tas.fr_entity_code).first()
                if frec_match:
                    match_count += 1
                    logger.info(
                        "   Matched unknown funding agency for TAS {} with FREC {}"
                        .format(next_tas.tas_rendering_label,
                                next_tas.fr_entity_code))
                    next_tas.funding_toptier_agency = frec_match
                    next_tas.save()

            logger.info(
                "\n=== Updated {} funding toptiers with a FREC agency. ===".
                format(match_count))

            # update TAS fk relationships to federal accounts
            logger.info(
                "\n=== Updating TAS FK relationships to Federal Accounts ===")
            updates = update_federal_accounts()
            logger.info("   Updated {} Federal Account Rows".format(updates))
            inserts = insert_federal_accounts()
            logger.info("   Created {} Federal Account Rows".format(inserts))
            deletes = remove_empty_federal_accounts()
            logger.info("   Removed {} Federal Account Rows".format(deletes))

            logger.info("\n=== TAS loader finished successfully! ===")
        except Exception as e:
            logger.error(e)
            logger.error("\n=== TAS loader failed ===")
            sys.exit(1)
コード例 #6
0
    def handle(self, *args, **options):
        try:
            call_command("run_sql", "-f", TAS_SQL_PATH)

            # Match funding toptiers by FREC if they didn't match by AID
            unmapped_funding_agencies = TreasuryAppropriationAccount.objects.filter(funding_toptier_agency=None)
            match_count = 0
            msg_str = "\n=== Found {} unmatched funding agencies across all TAS objects. ==="
            logger.info(msg_str.format(unmapped_funding_agencies.count()))
            for next_tas in unmapped_funding_agencies:
                # CGAC code is a combination of FRECs and CGACs. It will never be empty and it will always
                # be unique in ToptierAgencies; this should be safe to do.
                frec_match = ToptierAgency.objects.filter(cgac_code=next_tas.fr_entity_code).first()
                if frec_match:
                    match_count += 1
                    logger.info("   Matched unknown funding agency for TAS {} with FREC {}".format(
                        next_tas.tas_rendering_label, next_tas.fr_entity_code))
                    next_tas.funding_toptier_agency = frec_match
                    next_tas.save()

            logger.info("\n=== Updated {} funding toptiers with a FREC agency. ===".format(match_count))

            # update TAS fk relationships to federal accounts
            logger.info("\n=== Updating TAS FK relationships to Federal Accounts ===")
            updates = update_federal_accounts()
            logger.info("   Updated {} Federal Account Rows".format(updates))
            inserts = insert_federal_accounts()
            logger.info("   Created {} Federal Account Rows".format(inserts))
            deletes = remove_empty_federal_accounts()
            logger.info("   Removed {} Federal Account Rows".format(deletes))

            logger.info("\n=== TAS loader finished successfully! ===")
        except Exception as e:
            logger.error(e)
            logger.error("\n=== TAS loader failed ===")
            sys.exit(1)
コード例 #7
0
    def handle(self, *args, **options):
        is_remote_file = len(options['location'][0].split('.')) == 1
        if is_remote_file:
            s3connection = boto.s3.connect_to_region(
                os.environ.get('USASPENDING_AWS_REGION'))
            s3bucket = s3connection.lookup(options['location'][0])
            file_path = s3bucket.get_key('cars_tas.csv')
        else:
            file_path = options['location'][0]

        field_map = {
            "treasury_account_identifier": "ACCT_NUM",
            "account_title": "GWA_TAS_NAME",
            "reporting_agency_id": "Agency AID",
            "reporting_agency_name": "Agency Name",
            "budget_bureau_code": "ADMIN_ORG",
            "budget_bureau_name": "Admin Org Name",
            "fr_entity_code": "FR Entity Type",
            "fr_entity_description": "FR Entity Description",
            "budget_function_code": "Function Code",
            "budget_function_title": "Function Description",
            "budget_subfunction_code": "Sub Function Code",
            "budget_subfunction_title": "Sub Function Description"
        }

        value_map = {
            "data_source":
            "USA",
            "tas_rendering_label":
            self.generate_tas_rendering_label,
            "allocation_transfer_agency_id":
            lambda row: row["ATA"].strip(),
            "agency_id":
            lambda row: row["AID"].strip(),
            "beginning_period_of_availability":
            lambda row: row["BPOA"].strip(),
            "ending_period_of_availability":
            lambda row: row["EPOA"].strip(),
            "availability_type_code":
            lambda row: row["A"].strip(),
            "main_account_code":
            lambda row: row["MAIN"].strip(),
            "sub_account_code":
            lambda row: row["SUB"].strip(),
            "awarding_toptier_agency":
            lambda row: ToptierAgency.objects.filter(cgac_code=row[
                "ATA"].strip()).order_by("fpds_code").first(),
            "funding_toptier_agency":
            lambda row: ToptierAgency.objects.filter(cgac_code=row[
                "AID"].strip()).order_by("fpds_code").first()
        }

        loader = ThreadedDataLoader(
            model_class=TreasuryAppropriationAccount,
            field_map=field_map,
            value_map=value_map,
            collision_field='treasury_account_identifier',
            collision_behavior='update',
            pre_row_function=self.skip_and_remove_financing_tas)
        loader.load_from_file(filepath=file_path, remote_file=is_remote_file)

        # Match funding toptiers by FREC if they didn't match by AID
        unmapped_funding_agencies = TreasuryAppropriationAccount.objects.filter(
            funding_toptier_agency=None)
        match_count = 0
        self.logger.info(
            'Found {} unmatched funding agencies across all TAS objects. '
            'Attempting to match on FREC.'.format(
                unmapped_funding_agencies.count()))
        for next_tas in unmapped_funding_agencies:
            # CGAC code is a combination of FRECs and CGACs. It will never be empty and it will always
            # be unique in ToptierAgencies; this should be safe to do.
            frec_match = ToptierAgency.objects.filter(
                cgac_code=next_tas.fr_entity_code).first()
            if frec_match:
                match_count += 1
                self.logger.info(
                    'Matched unknown funding agency for TAS {} with FREC {}'.
                    format(next_tas.tas_rendering_label,
                           next_tas.fr_entity_code))
                next_tas.funding_toptier_agency = frec_match
                next_tas.save()

        self.logger.info(
            'Updated {} funding toptiers with a FREC agency.'.format(
                match_count))

        # update TAS fk relationships to federal accounts
        remove_empty_federal_accounts()
        update_federal_accounts()
        insert_federal_accounts()