コード例 #1
0
    def autodetect_shotname(frame_w, frame_h, num_shots_hint):
        best_shot_names = None
        best_loss = None
        for shot_name in shots:
            aspect_ratio = shots[shot_name]["aspect_ratio"]
            c = min(frame_h, frame_w / aspect_ratio)
            slice_h_shift = r((frame_h - c) / 2)
            slice_w_shift = r((frame_w - c * aspect_ratio) / 2)
            if slice_w_shift != 0 and slice_h_shift == 0:
                loss = slice_w_shift * frame_w * 2
            elif slice_w_shift == 0 and slice_h_shift != 0:
                loss = slice_h_shift * frame_h * 2
            else:
                if slice_w_shift != 0 and slice_h_shift != 0:
                    raise ErrorSignal(math_is_wrong_error)
                else:
                    loss = 0
            if (best_loss is None) or (loss < best_loss):
                best_loss = loss
                best_shot_names = [shot_name]
            elif loss == best_loss:
                best_shot_names.append(shot_name)
        if num_shots_hint is None:
            num_shots_hint = 0
        best_num_shots_name = None
        best_num_shots_diff = None
        for shot_name in best_shot_names:
            num_shots = len(shots[shot_name]['shots'])
            if (best_num_shots_name is None) or abs(num_shots - num_shots_hint) < best_num_shots_diff:
                best_num_shots_name = shot_name
                best_num_shots_diff = abs(num_shots - num_shots_hint)

        return best_num_shots_name
コード例 #2
0
def inverted_res_block(input_tensor, expansion, stride, alpha, filters):
    in_channels = input_tensor.shape.as_list()[-1]
    filters = r(filters * alpha)
    output_tensor = input_tensor

    output_tensor = Conv2D(expansion * in_channels,
                           kernel_size=(1, 1),
                           use_bias=False)(output_tensor)
    output_tensor = BatchNormalization(
        epsilon=batch_norm_eps, momentum=batch_norm_momentum)(output_tensor)
    output_tensor = ReLU(relu_threshold)(output_tensor)

    output_tensor = ZeroPadding2D()(output_tensor)
    output_tensor = DepthwiseConv2D(kernel_size=(3, 3),
                                    strides=stride,
                                    use_bias=False)(output_tensor)
    output_tensor = BatchNormalization(
        epsilon=batch_norm_eps, momentum=batch_norm_momentum)(output_tensor)
    output_tensor = ReLU(relu_threshold)(output_tensor)

    output_tensor = Conv2D(filters, kernel_size=(1, 1),
                           use_bias=False)(output_tensor)
    output_tensor = BatchNormalization(
        epsilon=batch_norm_eps, momentum=batch_norm_momentum)(output_tensor)

    if in_channels == filters and stride == 1:
        output_tensor = Add()([input_tensor, output_tensor])
    return output_tensor
コード例 #3
0
def FDMobileNet(input_tensor, alpha=1.0):
    def SepConvBlock(input_tensor, filters, strides):
        output_tensor = input_tensor

        output_tensor = ZeroPadding2D()(output_tensor)
        output_tensor = DepthwiseConv2D(kernel_size=(3, 3),
                                        strides=strides)(output_tensor)
        output_tensor = BatchNormalization()(output_tensor)

        output_tensor = Conv2D(kernel_size=(1, 1),
                               filters=filters)(output_tensor)
        output_tensor = BatchNormalization()(output_tensor)
        output_tensor = LeakyReLU(alpha=0.1)(output_tensor)

        return output_tensor

    output_tensor = input_tensor
    output_tensor = Conv2D(kernel_size=(3, 3),
                           strides=(2, 2),
                           filters=r(32 * alpha))(output_tensor)
    output_tensor = BatchNormalization()(output_tensor)
    output_tensor = LeakyReLU(alpha=0.1)(output_tensor)

    output_tensor = SepConvBlock(output_tensor, r(64 * alpha), (2, 2))

    output_tensor = SepConvBlock(output_tensor, r(128 * alpha), (2, 2))
    output_tensor = SepConvBlock(output_tensor, r(128 * alpha), (1, 1))

    output_tensor = SepConvBlock(output_tensor, r(256 * alpha), (2, 2))
    output_tensor = SepConvBlock(output_tensor, r(256 * alpha), (1, 1))

    output_tensor = SepConvBlock(output_tensor, r(512 * alpha), (2, 2))
    for i in range(4):
        output_tensor = SepConvBlock(output_tensor, r(512 * alpha), (1, 1))
    output_tensor = SepConvBlock(output_tensor, r(1024 * alpha), (1, 1))

    return output_tensor
コード例 #4
0
    def recognise(self, frame, faces):
        resized_images = []

        for face in faces:
            resized_image = np.ones((self.image_size, self.image_size, 1), dtype=np.uint8) * fill_color

            face = np.array(face)

            face[0] *= self.frame_w
            face[2] *= self.frame_w
            face[1] *= self.frame_h
            face[3] *= self.frame_h

            face_w = face[2] - face[0]
            face_h = face[3] - face[1]

            face[0] -= face_w * padding
            face[1] -= face_h * padding
            face[2] += face_w * padding
            face[3] += face_h * padding

            face_w = face[2] - face[0]
            face_h = face[3] - face[1]

            if face_w > face_h:
                face[1] -= (face_w - face_h) / 2
                face[3] += (face_w - face_h) / 2
                if face[1] < 0 and face[3] < self.frame_h:
                    face[3] += -face[1]
                    face[1] = 0
                elif face[1] > 0 and face[3] > self.frame_h:
                    face[1] -= (face[3] - self.frame_h)
                    face[3] = self.frame_h
            else:
                face[0] -= (face_h - face_w) / 2
                face[2] += (face_h - face_w) / 2
                if face[0] < 0 and face[2] < self.frame_w:
                    face[2] += -face[0]
                    face[0] = 0
                elif face[0] > 0 and face[2] > self.frame_w:
                    face[0] -= (face[2] - self.frame_w)
                    face[2] = self.frame_w

            face[0] /= self.frame_w
            face[2] /= self.frame_w
            face[1] /= self.frame_h
            face[3] /= self.frame_h
            face = np.minimum(np.maximum(face, 0), 1)

            crop_x1 = r(face[0] * self.frame_w)
            crop_y1 = r(face[1] * self.frame_h)
            crop_x2 = r(face[2] * self.frame_w)
            crop_y2 = r(face[3] * self.frame_h)
            crop_w = crop_x2 - crop_x1
            crop_h = crop_y2 - crop_y1

            if crop_w > crop_h:
                crop_h = r(crop_h / crop_w * self.image_size)
                crop_w = self.image_size
            else:
                crop_w = r(crop_w / crop_h * self.image_size)
                crop_h = self.image_size

            shift_x = r((self.image_size - crop_w) / 2)
            shift_y = r((self.image_size - crop_h) / 2)

            resized_image[shift_y:(shift_y + crop_h), shift_x:(shift_x + crop_w)] = np.dot(cv2.resize(frame[crop_y1:crop_y2, crop_x1:crop_x2], (crop_w, crop_h), interpolation=cv2.INTER_NEAREST), Y_coefs).reshape((crop_h, crop_w, 1))
            resized_images.append(resized_image)

        resized_images = np.array(resized_images, dtype=np.uint8)
        if len(resized_images) > 0:
            predictions = self.model.predict(resized_images, batch_size=min(batch_size, len(resized_images)), verbose=0)
            predictions = softmax(predictions)
        else:
            predictions = []

        return np.array(predictions)
コード例 #5
0
def FaceMobileNet(input_tensor, alpha=1.0):
    output_tensor = input_tensor

    output_tensor = ZeroPadding2D()(output_tensor)
    output_tensor = Conv2D(filters=r(64 * alpha),
                           kernel_size=(3, 3),
                           strides=(2, 2),
                           use_bias=False)(output_tensor)
    output_tensor = BatchNormalization(
        epsilon=batch_norm_eps, momentum=batch_norm_momentum)(output_tensor)
    output_tensor = ReLU(relu_threshold)(output_tensor)

    output_tensor = ZeroPadding2D()(output_tensor)
    output_tensor = DepthwiseConv2D(kernel_size=(3, 3),
                                    use_bias=False)(output_tensor)
    output_tensor = BatchNormalization(
        epsilon=batch_norm_eps, momentum=batch_norm_momentum)(output_tensor)
    output_tensor = ReLU(relu_threshold)(output_tensor)

    output_tensor = inverted_res_block(output_tensor,
                                       filters=64,
                                       alpha=alpha,
                                       stride=2,
                                       expansion=2)
    output_tensor = inverted_res_block(output_tensor,
                                       filters=64,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)
    output_tensor = inverted_res_block(output_tensor,
                                       filters=64,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)
    output_tensor = inverted_res_block(output_tensor,
                                       filters=64,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)
    output_tensor = inverted_res_block(output_tensor,
                                       filters=64,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)

    output_tensor = inverted_res_block(output_tensor,
                                       filters=128,
                                       alpha=alpha,
                                       stride=2,
                                       expansion=4)

    output_tensor = inverted_res_block(output_tensor,
                                       filters=128,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)
    output_tensor = inverted_res_block(output_tensor,
                                       filters=128,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)
    output_tensor = inverted_res_block(output_tensor,
                                       filters=128,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)
    output_tensor = inverted_res_block(output_tensor,
                                       filters=128,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)
    output_tensor = inverted_res_block(output_tensor,
                                       filters=128,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)
    output_tensor = inverted_res_block(output_tensor,
                                       filters=128,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)

    output_tensor = inverted_res_block(output_tensor,
                                       filters=128,
                                       alpha=alpha,
                                       stride=2,
                                       expansion=4)

    output_tensor = inverted_res_block(output_tensor,
                                       filters=128,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)
    output_tensor = inverted_res_block(output_tensor,
                                       filters=128,
                                       alpha=alpha,
                                       stride=1,
                                       expansion=2)

    output_tensor = Conv2D(filters=r(512 * alpha),
                           kernel_size=(1, 1),
                           use_bias=False)(output_tensor)
    output_tensor = BatchNormalization(
        epsilon=batch_norm_eps, momentum=batch_norm_momentum)(output_tensor)
    output_tensor = ReLU(relu_threshold)(output_tensor)

    output_tensor = DepthwiseConv2D(
        kernel_size=(output_tensor.shape.as_list()[1],
                     output_tensor.shape.as_list()[2]),
        use_bias=False)(output_tensor)
    output_tensor = BatchNormalization(
        epsilon=batch_norm_eps, momentum=batch_norm_momentum)(output_tensor)

    output_tensor = Conv2D(filters=r(128 * alpha),
                           kernel_size=(1, 1),
                           use_bias=False)(output_tensor)
    output_tensor = BatchNormalization(
        epsilon=batch_norm_eps, momentum=batch_norm_momentum)(output_tensor)

    return output_tensor
コード例 #6
0
    def detect(self, frame):
        original_frame_shape = frame.shape

        aspect_ratio = self.shots["aspect_ratio"]
        c = min(frame.shape[0], frame.shape[1] / aspect_ratio)
        slice_h_shift = r((frame.shape[0] - c) / 2)
        slice_w_shift = r((frame.shape[1] - c * aspect_ratio) / 2)
        if slice_w_shift != 0 and slice_h_shift == 0:
            frame = frame[:, slice_w_shift:-slice_w_shift]
        elif slice_w_shift == 0 and slice_h_shift != 0:
            frame = frame[slice_h_shift:-slice_h_shift, :]
        else:
            if slice_w_shift != 0 and slice_h_shift != 0:
                raise ErrorSignal(math_is_wrong_error)

        frames = []
        for s in self.shots["shots"]:
            frames.append(cv2.resize(frame[r(s[1] * frame.shape[0]):r((s[1] + s[3]) * frame.shape[0]), r(s[0] * frame.shape[1]):r((s[0] + s[2]) * frame.shape[1])], (self.image_size, self.image_size), interpolation=cv2.INTER_NEAREST))
        frames = np.array(frames)

        predictions = self.model.predict(frames, batch_size=min(len(frames), batch_size), verbose=0)

        boxes = []
        prob = []
        shots = self.shots['shots']
        for i in range(len(shots)):
            slice_boxes = []
            slice_prob = []
            for j in range(predictions.shape[1]):
                for k in range(predictions.shape[2]):
                    p = sigmoid(predictions[i][j][k][4])
                    if not(p is None) and p > self.prob_threshold:
                        px = sigmoid(predictions[i][j][k][0])
                        py = sigmoid(predictions[i][j][k][1])
                        pw = min(math.exp(predictions[i][j][k][2] / self.grids), self.grids)
                        ph = min(math.exp(predictions[i][j][k][3] / self.grids), self.grids)
                        if not(px is None) and not(py is None) and not(pw is None) and not(ph is None) and pw > eps and ph > eps:
                            cx = (px + j) / self.grids
                            cy = (py + k) / self.grids
                            wx = pw / self.grids
                            wy = ph / self.grids
                            if wx <= shots[i][4] and wy <= shots[i][4]:
                                lx = min(max(cx - wx / 2, 0), 1)
                                ly = min(max(cy - wy / 2, 0), 1)
                                rx = min(max(cx + wx / 2, 0), 1)
                                ry = min(max(cy + wy / 2, 0), 1)

                                lx *= shots[i][2]
                                ly *= shots[i][3]
                                rx *= shots[i][2]
                                ry *= shots[i][3]

                                lx += shots[i][0]
                                ly += shots[i][1]
                                rx += shots[i][0]
                                ry += shots[i][1]

                                slice_boxes.append([lx, ly, rx, ry])
                                slice_prob.append(p)

            slice_boxes = np.array(slice_boxes)
            slice_prob = np.array(slice_prob)

            slice_boxes = non_max_suppression(slice_boxes, slice_prob, self.iou_threshold)

            for sb in slice_boxes:
                boxes.append(sb)


        boxes = np.array(boxes)
        boxes = union_suppression(boxes, self.union_threshold)

        for i in range(len(boxes)):
            boxes[i][0] /= original_frame_shape[1] / frame.shape[1]
            boxes[i][1] /= original_frame_shape[0] / frame.shape[0]
            boxes[i][2] /= original_frame_shape[1] / frame.shape[1]
            boxes[i][3] /= original_frame_shape[0] / frame.shape[0]

            boxes[i][0] += slice_w_shift / original_frame_shape[1]
            boxes[i][1] += slice_h_shift / original_frame_shape[0]
            boxes[i][2] += slice_w_shift / original_frame_shape[1]
            boxes[i][3] += slice_h_shift / original_frame_shape[0]

        return list(boxes)