def plot_all_cases_maps_prof(var1, relative=True, width_ratios=[3, .7, 1.8], plot_significance=False, asp_rat=.55, width=6.8): #varl_map=None nvars = 1 fig = plt.figure(figsize=[width * nvars, asp_rat * width * nvars]) gs = gridspec.GridSpec(2, nvars + 2, width_ratios=width_ratios) ax_prof = plt.subplot(gs[:, 0]) ax_labs = plt.subplot(gs[:, 1]) ax_maps1 = plt.subplot(gs[0, 2], projection=ccrs.Robinson()) ax_maps2 = plt.subplot(gs[1, 2], projection=ccrs.Robinson()) axs_maps = [ax_maps1, ax_maps2] linestd = dict() linestd_nn = dict() varl = [var1] #,'SO4_NA'] profiles_sub(areas, ax_prof, cases, linestd, linestd_nn, var1, varl) linestd = dict() linestd_nn = dict() for case, ls in zip(cases, linests): linestd[case] = ls linestd_nn[get_nice_name_case(case)] = ls ax = ax_prof # plt.subplots(1, figsize=[6,8]) cases_nn = [get_nice_name_case(case) for case in cases]
def plot_prof_map_together(var, areas, cases, axs, var_map=None, map_kwargs={}): if axs is None: fig = plt.figure(figsize = [width,asp_rat*width]) gs = gridspec.GridSpec(2, 2,height_ratios=[1,1.], width_ratios=[5,1])#width_ratios=[2, 1]) ax1 = plt.subplot(gs[1,0]) ax2 = plt.subplot(gs[1,1]) ax3 = plt.subplot(gs[0,:], projection=ccrs.Robinson()) axs=[ax1,ax2,ax3] ax2.axis('off') cases_nn = [get_nice_name_case(case) for case in cases]
def plot_levlat_map_together(var, areas, cases, axs, var_map=None, ylim = [1e3, 100], relative=True, yscale='log', cba_kwargs=None, cbar_orientation='horizontal' ): if axs is None: fig = plt.figure(figsize = [width,asp_rat*width]) gs = gridspec.GridSpec(2, 2,height_ratios=[1,1.], width_ratios=[5,1])#width_ratios=[2, 1]) ax1 = plt.subplot(gs[1,0]) ax2 = plt.subplot(gs[1,1]) ax3 = plt.subplot(gs[0,:], projection=ccrs.Robinson()) axs=[ax1,ax2,ax3] ax2.axis('off') cases_nn = [get_nice_name_case(case) for case in cases]
def plt_prof_map_together_ls(var1, var2, areas, cases, asp_rat=1, width=5.5, varl_map=None): nvars = 2 fig = plt.figure(figsize=[width * nvars, asp_rat * width * nvars]) gs = gridspec.GridSpec(2, nvars + 1, height_ratios=[1, 1.], width_ratios=[5, 5, 1]) #width_ratios=[2, 1]) axs_prof = [] axs_maps = [] ax1 = plt.subplot(gs[1, 0]) ax2 = None #plt.subplot(gs[1,1+i*2]) ax3 = plt.subplot(gs[0, 0], projection=ccrs.Robinson()) print(var1, areas, cases, [ax1, ax3]) if varl_map is None: var1m = None var2m = None else: var1m = varl_map[0] var2m = varl_map[1] plot_prof_map_together(var1, areas, cases, [ax1, ax3], var_map=var1m) axs_maps.append(ax3) axs_prof.append(ax1) ax1 = plt.subplot(gs[1, 1]) ax2 = plt.subplot(gs[1, 2]) ax3 = plt.subplot(gs[0, 1], projection=ccrs.Robinson()) plot_prof_map_together(var2, areas, cases, [ax1, ax3], var_map=var2m) axs_maps.append(ax3) axs_prof.append(ax1) ax2.axis('off') linestd = dict() linestd_nn = dict() for case, ls in zip(cases, linests): linestd[case] = ls linestd_nn[get_nice_name_case(case)] = ls ax = ax1 # plt.subplots(1, figsize=[6,8]) cases_nn = [get_nice_name_case(case) for case in cases]
def plt_prof_map_together(var, areas, cases, asp_rat=1, width=6): fig = plt.figure(figsize=[width, asp_rat * width]) gs = gridspec.GridSpec(2, 2, height_ratios=[1, 1.], width_ratios=[5, 1]) #width_ratios=[2, 1]) ax1 = plt.subplot(gs[1, 0]) ax2 = plt.subplot(gs[1, 1]) ax3 = plt.subplot(gs[0, :], projection=ccrs.Robinson()) ax2.axis('off') cmapd = get_cmap_dic(areas) linestd = dict() linestd_nn = dict() for case, ls in zip(cases, linests): linestd[case] = ls linestd_nn[get_nice_name_case(case)] = ls ax = ax1 # plt.subplots(1, figsize=[6,8]) for area in areas: prof_dic = get_averaged_fields.get_profiles( cases, [var], startyear, endyear, area=area, pressure_adjust=pressure_adjust) for case in cases: kwargs = dict(color=get_area_col(area), linestyle=linestd[case]) plot_profile(prof_dic[case][var], ax=ax, kwargs=kwargs, xscale='log', label=case + ', ' + area, ylim=[1000, 200]) #, ax.grid(False, which='both') sns.despine(ax=ax) ax.set_yscale('log') set_scalar_formatter(ax) cases_nn = [get_nice_name_case(case) for case in cases]
#axs_prof[0].set_xlim([1e-13,5e-11]) #axs_prof[1].set_xlim([1e-13,5e-11]) #plt.savefig(fn_figure + 'png') #plt.savefig(fn_figure + 'pdf', dpi=300) axs_prof.set_xscale('log') #axs_prof.set_yxscale([10,1e3]) plt.show() # %% # %% asp_rat = .55 width = 6.8 relative = True varl_map = None nvars = 1 fig = plt.figure(figsize=[width * nvars, asp_rat * width * nvars]) gs = gridspec.GridSpec(2, nvars + 2, width_ratios=[3, .7, 1.9]) axs_prof = [] axs_maps = [] ax1 = plt.subplot(gs[:, 0]) ax_labs = plt.subplot(gs[:, 1]) ax_maps1 = plt.subplot(gs[0, 2], projection=ccrs.Robinson()) ax_maps2 = plt.subplot(gs[1, 2], projection=ccrs.Robinson()) var1 = 'NMR01' linestd = dict() linestd_nn = dict() varl = [var1] #,'SO4_NA'] profiles_sub(areas, ax1, cases, linestd, linestd_nn, var1, varl) linestd = dict()
'principal component 2', 'principal component 3' ]) # %% principal_breast_Df.tail() # %% print('Explained variation per principal component: {}'.format( pca_breast.explained_variance_ratio_)) # %% pca_breast.components_ # %% plt.figure() plt.figure(figsize=(10, 10)) plt.xticks(fontsize=12) plt.yticks(fontsize=14) plt.xlabel('Principal Component - 1', fontsize=20) plt.ylabel('Principal Component - 2', fontsize=20) plt.title("Principal Component Analysis of Breast Cancer Dataset", fontsize=20) targets = _df['NCONC_cat'].unique() colors = ['r', 'b', 'y', 'g'] #colors = ['r', 'g'] #plt.scatter(principal_breast_Df['principal component 1'] # , principal_breast_Df['principal component 2'], c=_df['NCONC01']) for target, color in zip(targets, colors): indicesToKeep = _df['NCONC_cat'] == target plt.scatter(principal_breast_Df.loc[indicesToKeep.values, 'principal component 1'],