コード例 #1
0
ファイル: main.py プロジェクト: dlsucomet/git-workshop-2017
def get_student():
    student_id = get_int("Enter ID Number:")
    matching_ids = [
        student for student in student_list if student.id == student_id
    ]

    if not matching_ids:
        print("You're not in the list!")
        get_student()

    return matching_ids[0]  # Take first student
コード例 #2
0
ファイル: main.py プロジェクト: dlsucomet/git-workshop-2017
 def edit_id_number():
     new_id = get_int("Enter your new ID number")
     student.id = new_id
コード例 #3
0
ファイル: main.py プロジェクト: dlsucomet/git-workshop-2017
 def edit_unit():
     new_unit = get_int("Enter new unit")
     course.unit = new_unit
コード例 #4
0
ファイル: main.py プロジェクト: dlsucomet/git-workshop-2017
 def add_course():
     code = get_string("Enter Code")
     unit = get_int("Enter unit")
     course_list.append(Course(unit=unit, code=code))
     print(course_list[0].code)  # TEST
コード例 #5
0
ファイル: main.py プロジェクト: dlsucomet/git-workshop-2017
    def register():
        name = get_string("Enter name")
        id = get_int("Enter ID Number")

        student_list.append(Student(name=name, id=id))
        print(f"Welcome {name}!")
コード例 #6
0
ファイル: main.py プロジェクト: loungani/parametric_var
    fig.suptitle('Proportion of variance explained by principal components')
    ax1.bar(["{:.1e}".format(eigenvalue) for eigenvalue
             in eigenvalue_df['eigenvalue']], eigenvalue_df['proportion_of_variance'])
    ax1.set_xlabel("eigenvalue")
    ax1.set_ylabel("proportion of variance explained")
    ax2.plot(cumulative_plot, marker="^")
    ax2.set_xlabel("# of principal components (sorted)")
    ax2.set_ylabel("Cumulative prop. of variance explained")
    ax2.set_ylim([0, 1])
    plt.show()

reduced_eigenvalue_matrix = None
reduced_covariance_matrix = None
if user_input.get_boolean("Reduce dimensionality using PCA? (Y/N) "):
    max_components = len(eigenvalue_df)
    num_components = user_input.get_int("Enter desired number of components (1 to " +
                                        str(max_components) + ") ", int_min=0, int_max=max_components)
    reduced_eigenvalue_matrix, reduced_covariance_matrix = \
        numerical_functions.run_principal_components_analysis(num_components, eigenvalue_df, eigenvector_df)

    adjusted_final = float((weights.dot(reduced_covariance_matrix)).dot(weights.transpose()))
    adjusted_portfolio_stddev = np.sqrt(adjusted_final)
    adjusted_shift = np.expm1(adjusted_portfolio_stddev * z_score) * np.sqrt(holding_period)
    adjusted_var = abs(np.sum(notional_values) * adjusted_shift)

    helper_functions.output(f"PCA-adjusted portfolio standard deviation: {adjusted_portfolio_stddev:.2%}")
    helper_functions.output(f"PCA-adjusted log return: {adjusted_shift:.2%}")
    helper_functions.output(f"PCA-adjusted percentage return: "
                            f"{adjusted_portfolio_stddev * z_score * np.sqrt(holding_period):.2%}")
    helper_functions.output(str(holding_period) + "-day" + f"{confidence_level: .2%}"
                            + " PCA-adjusted VaR: $" + f'{adjusted_var:,.2f}')