コード例 #1
0
def get_user_geo(uid):
    result = []
    user_geo_result = {}
    user_ip_dict = {}
    user_ip_result = dict()
    now_ts = time.time()
    now_date = ts2datetime(now_ts)
    #run_type
    if RUN_TYPE == 1:
        ts = datetime2ts(now_date)
    else:
        ts = datetime2ts(RUN_TEST_TIME)
    for i in range(1, 8):
        ts = ts - 3600*24
        results = r_cluster.hget('new_ip_'+str(ts), uid)
        if results:
            ip_dict = json.loads(results)
            for ip in ip_dict:
                ip_count = len(ip_dict[ip].split('&'))
                try:
                    user_ip_result[ip] += ip_count
                except:
                    user_ip_result[ip] = ip_count
    user_geo_dict = ip2geo(user_ip_result)
    user_geo_result = sorted(user_geo_dict.items(), key=lambda x:x[1], reverse=True)

    return user_geo_result
コード例 #2
0
ファイル: utils.py プロジェクト: ystone1025/info_consume
def get_user_geo(uid):
    result = []
    user_geo_result = {}
    user_ip_dict = {}
    user_ip_result = dict()
    now_ts = time.time()
    now_date = ts2datetime(now_ts)
    #run_type
    if RUN_TYPE == 1:
        ts = datetime2ts(now_date)
    else:
        ts = datetime2ts(RUN_TEST_TIME)
    for i in range(1, 8):
        ts = ts - 3600*24
        results = r_cluster2.hget('new_ip_'+str(ts), uid)
        if results:
            ip_dict = json.loads(results)
            for ip in ip_dict:
                ip_count = len(ip_dict[ip].split('&'))
                try:
                    user_ip_result[ip] += ip_count
                except:
                    user_ip_result[ip] = ip_count
    user_geo_dict = ip2geo(user_ip_result)
    user_geo_result = sorted(user_geo_dict.items(), key=lambda x:x[1], reverse=True)

    return user_geo_result
コード例 #3
0
ファイル: search.py プロジェクト: ztybuaa/user_portrait
def search_mention(now_ts, uid):
    date = ts2datetime(now_ts)
    ts = datetime2ts(date)
    #print 'at date-ts:', ts
    stat_results = dict()
    results = dict()
    for i in range(1,8):
        ts = ts - 24 * 3600
        try:
            result_string = r_cluster.hget('at_' + str(ts), str(uid))
        except:
            result_string = ''
        if not result_string:
            continue
        result_dict = json.loads(result_string)
        for at_uid in result_dict:
            try:
                stat_results[at_uid] += result_dict[at_uid]
            except:
                stat_results[at_uid] = result_dict[at_uid]
    
    for at_uid in stat_results:
        # search uid
        '''
        uname = search_uid2uname(at_uid)
        if not uname:
        '''    
        uid = ''
        count = stat_results[at_uid]
        results[at_uid] = [uid, count]
    if results:
        sort_results = sorted(results.items(), key=lambda x:x[1][1], reverse=True)
        return [sort_results[:20], len(results)]
    else:
        return [None, 0]
コード例 #4
0
ファイル: search.py プロジェクト: ztybuaa/user_portrait
def get_geo_track(uid):
    date_results = [] # {'2013-09-01':[(geo1, count1),(geo2, count2)], '2013-09-02'...}
    now_ts = time.time()
    now_date = ts2datetime(now_ts)
    #test
    now_date = '2013-09-08'
    ts = datetime2ts(now_date)
    city_list = []
    city_set = set()
    for i in range(7, 0, -1):
        timestamp = ts - i*24*3600
        #print 'timestamp:', ts2datetime(timestamp)
        ip_dict = dict()
        results = r_cluster.hget('ip_'+str(timestamp), uid)
        ip_dict = dict()
        date = ts2datetime(timestamp)
        date_key = '-'.join(date.split('-')[1:])
        if results:
            ip_dict = json.loads(results)
            geo_dict = ip_dict2geo(ip_dict)
            city_list.extend(geo_dict.keys())
            sort_geo_dict = sorted(geo_dict.items(), key=lambda x:x[1], reverse=True)
            date_results.append([date_key, sort_geo_dict[:2]])
        else:
            date_results.append([date_key, []])

    print 'results:', date_results
    city_set = set(city_list)
    geo_conclusion = get_geo_conclusion(uid, city_set)
    return [date_results, geo_conclusion]
コード例 #5
0
ファイル: search.py プロジェクト: ztybuaa/user_portrait
def search_location(now_ts, uid):
    date = ts2datetime(now_ts)
    #print 'date:', date
    ts = datetime2ts(date)
    #print 'date-ts:', ts
    stat_results = dict()
    results = dict()
    for i in range(1, 8):
        ts = ts - 24 * 3600
        #print 'for-ts:', ts
        result_string = r_cluster.hget('ip_' + str(ts), str(uid))
        if not result_string:
            continue
        result_dict = json.loads(result_string)
        for ip in result_dict:
            try:
                stat_results[ip] += result_dict[ip]
            except:
                stat_results[ip] = result_dict[ip]
    for ip in stat_results:
        city = ip2city(ip)
        if city:
            try:
                results[city][ip] = stat_results[ip]
            except:
                results[city] = {ip: stat_results[ip]}
                

    description = active_geo_description(results)
    results['description'] = description
    #print 'location results:', results
    return results
コード例 #6
0
ファイル: utils.py プロジェクト: taozhiiq/user_portrait
def get_user_geo(uid):
    result = []
    user_geo_result = {}
    user_ip_dict = {}
    user_ip_result = dict()
    now_ts = time.time()
    now_date = ts2datetime(now_ts)
    ts = datetime2ts(now_date)
    #test
    ts = datetime2ts('2013-09-08')
    for i in range(1, 8):
        ts = ts - 3600*24
        results = r_cluster.hget('ip_'+str(ts), uid)
        if results:
            ip_dict = json.loads(results)
            for ip in ip_dict:
                try:
                    user_ip_result[ip] += ip_dict[ip]
                except:
                    user_ip_result[ip] = ip_dict[ip]
    #print 'user_ip_result:', user_ip_result
    user_geo_dict = ip2geo(user_ip_result)
    user_geo_result = sorted(user_geo_dict.items(), key=lambda x:x[1], reverse=True)

    return user_geo_result
コード例 #7
0
def new_get_user_location(uid):
    results = {}
    now_date = ts2datetime(time.time())
    now_date_ts = datetime2ts(now_date)
    #run type
    if RUN_TYPE == 0:
        now_date_ts = datetime2ts(RUN_TEST_TIME) - DAY
        now_date = ts2datetime(now_date_ts)
    #now ip
    try:
        ip_time_string = r_cluster.hget('new_ip_'+str(now_date_ts), uid)
    except Exception, e:
        raise e
コード例 #8
0
def new_get_user_location(uid):
    results = {}
    now_date = ts2datetime(time.time())
    now_date_ts = datetime2ts(now_date)
    #run type
    if RUN_TYPE == 0:
        now_date_ts = datetime2ts(RUN_TEST_TIME) - DAY
        now_date = ts2datetime(now_date_ts)
    #now ip
    try:
        ip_time_string = r_cluster.hget('new_ip_'+str(now_date_ts), uid)
    except Exception, e:
        raise e
コード例 #9
0
ファイル: search.py プロジェクト: ztybuaa/user_portrait
def search_activity(now_ts, uid):
    date = ts2datetime(now_ts)
    print 'date:', date
    ts = datetime2ts(date)
    timestamp = ts
    print 'date-timestamp:', ts
    activity_result = dict()
    results = dict()
    segment_result = dict()
    for i in range(1, 8):
        ts = timestamp - 24 * 3600*i
        #print 'for-ts:', ts
        try:
            result_string = r_cluster.hget('activity_' + str(ts), str(uid))
        except:
            result_string = ''
        #print 'activity:', result_string
        if not result_string:
            continue
        result_dict = json.loads(result_string)
        for time_segment in result_dict:
            try:
                results[int(time_segment)/16*15*60*16+ts] += result_dict[time_segment]
            except:
                
                results[int(time_segment)/16*15*60*16+ts] = result_dict[time_segment]
            try:
                segment_result[int(time_segment)/16*15*60*16] += result_dict[time_segment]
            except:
                segment_result[int(time_segment)/16*15*60*16] = result_dict[time_segment]


    trend_list = []
    for i in range(1,8):
        ts = timestamp - i*24*3600
        for j in range(0, 6):
            time_seg = ts + j*15*60*16
            if time_seg in results:
                trend_list.append((time_seg, results[time_seg]))
            else:
                trend_list.append((time_seg, 0))
    sort_trend_list = sorted(trend_list, key=lambda x:x[0], reverse=False)
    #print 'sort_trend_list:', sort_trend_list
    activity_result['activity_trend'] = sort_trend_list
    sort_segment_list = sorted(segment_result.items(), key=lambda x:x[1], reverse=True)
    activity_result['activity_time'] = sort_segment_list[:2]
    #print segment_result
    description = active_time_description(segment_result)
    activity_result['description'] = description
    return activity_result
コード例 #10
0
ファイル: utils.py プロジェクト: taozhiiq/user_portrait
def get_user_hashtag(uid):
    user_hashtag_result = {}
    now_ts = time.time()
    now_date = ts2datetime(now_ts)
    ts = datetime2ts(now_date)
    #test
    ts = datetime2ts('2013-09-08')
    for i in range(1, 8):
        ts = ts - 3600*24
        results = r_cluster.hget('hashtag_'+str(ts), uid)
        if results:
            hashtag_dict = json.loads(results)
            for hashtag in hashtag_dict:
                try:
                    user_hashtag_result[hashtag] += hashtag_dict[hashtag]
                except:
                    user_hashtag_result[hashtag] = hashtag_dict[hashtag]
    sort_hashtag_dict = sorted(user_hashtag_result.items(), key=lambda x:x[1], reverse=True)

    return sort_hashtag_dict
コード例 #11
0
def get_user_trend(uid):
    activity_result = dict()
    now_ts = time.time()
    date = ts2datetime(now_ts)
    #run_type
    if RUN_TYPE == 1:
        ts = datetime2ts(date)
    else:
        ts = datetime2ts(RUN_TEST_TIME)
    timestamp = ts
    results = dict()
    for i in range(1, 8):
        ts = timestamp - 24 * 3600 * i
        try:
            result_string = r_cluster.hget('activity_' + str(ts), str(uid))
        except:
            result_string = ''
        if not result_string:
            continue
        result_dict = json.loads(result_string)
        for time_segment in result_dict:
            try:
                results[int(time_segment) / 16 * 15 * 60 * 16 +
                        ts] += result_dict[time_segment]
            except:
                results[int(time_segment) / 16 * 15 * 60 * 16 +
                        ts] = result_dict[time_segment]

    trend_list = []
    for i in range(1, 8):
        ts = timestamp - i * 24 * 3600
        for j in range(0, 6):
            time_seg = ts + j * 15 * 60 * 16
            if time_seg in results:
                trend_list.append((time_seg, results[time_seg]))
            else:
                trend_list.append((time_seg, 0))
    sort_trend_list = sorted(trend_list, key=lambda x: x[0], reverse=True)
    x_axis = [item[0] for item in sort_trend_list]
    y_axis = [item[1] for item in sort_trend_list]
    return [x_axis, y_axis]
コード例 #12
0
def search_mention(uid):
    now_date_ts = datetime2ts(ts2datetime(time.time()))
    #run type
    if RUN_TYPE == 0:
        now_date_ts = datetime2ts(RUN_TEST_TIME)
    day_result_dict_list = []
    for i in range(7,0, -1):
        iter_ts = now_date_ts - i * DAY
        try:
            result_string = r_cluster.hget('at_' + str(ts), str(uid))
        except:
            result_string = ''
        if not result_string:
            continue
        day_result_dict = json.loads(results_string)
        day_result_dict_list.append(day_result_dict)
    if day_result_dict_list:
        week_result_dict = union_dict(day_result_dict_list)
    else:
        week_result_dict = {}
    return week_result_dict 
コード例 #13
0
def search_mention(uid):
    now_date_ts = datetime2ts(ts2datetime(time.time()))
    #run type
    if RUN_TYPE == 0:
        now_date_ts = datetime2ts(RUN_TEST_TIME)
    day_result_dict_list = []
    for i in range(7,0, -1):
        iter_ts = now_date_ts - i * DAY
        try:
            result_string = r_cluster.hget('at_' + str(ts), str(uid))
        except:
            result_string = ''
        if not result_string:
            continue
        day_result_dict = json.loads(results_string)
        day_result_dict_list.append(day_result_dict)
    if day_result_dict_list:
        week_result_dict = union_dict(day_result_dict_list)
    else:
        week_result_dict = {}
    return week_result_dict 
コード例 #14
0
def get_user_hashtag(uid):
    user_hashtag_result = {}
    now_ts = time.time()
    now_date = ts2datetime(now_ts)
    #run_type
    if RUN_TYPE == 1:
        ts = datetime2ts(now_date)
    else:
        ts = datetime2ts(RUN_TEST_TIME)
    for i in range(1, 8):
        ts = ts - 3600*24
        results = r_cluster.hget('hashtag_'+str(ts), uid)
        if results:
            hashtag_dict = json.loads(results)
            for hashtag in hashtag_dict:
                try:
                    user_hashtag_result[hashtag] += hashtag_dict[hashtag]
                except:
                    user_hashtag_result[hashtag] = hashtag_dict[hashtag]
    sort_hashtag_dict = sorted(user_hashtag_result.items(), key=lambda x:x[1], reverse=True)

    return sort_hashtag_dict
コード例 #15
0
ファイル: views.py プロジェクト: jianjian0dandan/info_consume
def weibo_count():
    uid_list = weibo_get_uid_list('uid.txt')
    today = today_time()
    hashtag_list = {}
    for uid in uid_list:
        hashtag = r_cluster.hget('hashtag_' + '1480176000', uid)
        if hashtag != None:
            hashtag = hashtag.encode('utf8')
            hashtag = json.loads(hashtag)

            for k, v in hashtag.iteritems():
                try:
                    hashtag_list[k] += v
                except:
                    hashtag_list[k] = v
        #r_cluster.hget('hashtag_'+str(a))

    hashtag_list = sorted(hashtag_list.items(),
                          key=lambda x: x[1],
                          reverse=True)[:20]

    return json.dumps(hashtag_list)
コード例 #16
0
def get_user_hashtag(uid):
    user_hashtag_result = {}
    now_ts = time.time()
    now_date = ts2datetime(now_ts)
    #run_type
    if RUN_TYPE == 1:
        ts = datetime2ts(now_date)
    else:
        ts = datetime2ts(RUN_TEST_TIME)
    for i in range(1, 8):
        ts = ts - 3600*24
        results = r_cluster.hget('hashtag_'+str(ts), uid)
        if results:
            hashtag_dict = json.loads(results)
            for hashtag in hashtag_dict:
                try:
                    user_hashtag_result[hashtag] += hashtag_dict[hashtag]
                except:
                    user_hashtag_result[hashtag] = hashtag_dict[hashtag]
    sort_hashtag_dict = sorted(user_hashtag_result.items(), key=lambda x:x[1], reverse=True)

    return sort_hashtag_dict
コード例 #17
0
def get_user_trend(uid):
    activity_result = dict()
    now_ts = time.time()
    date = ts2datetime(now_ts)
    #run_type
    if RUN_TYPE == 1:
        ts = datetime2ts(date)
    else:
        ts = datetime2ts(RUN_TEST_TIME)
    timestamp = ts
    results = dict()
    for i in range(1, 8):
        ts = timestamp - 24*3600*i
        try:
            result_string = r_cluster.hget('activity_'+str(ts), str(uid))
        except:
            result_string = ''
        if not result_string:
            continue
        result_dict = json.loads(result_string)
        for time_segment in result_dict:
            try:
                results[int(time_segment)/16*15*60*16+ts] += result_dict[time_segment]
            except:
                results[int(time_segment)/16*15*60*16+ts] = result_dict[time_segment]
    
    trend_list = []
    for i in range(1, 8):
        ts = timestamp - i*24*3600
        for j in range(0, 6):
            time_seg = ts + j*15*60*16
            if time_seg in results:
                trend_list.append((time_seg, results[time_seg]))
            else:
                trend_list.append((time_seg, 0))
    sort_trend_list = sorted(trend_list, key=lambda x:x[0], reverse=True)
    x_axis = [item[0] for item in sort_trend_list]
    y_axis = [item[1] for item in sort_trend_list]
    return [x_axis, y_axis]
コード例 #18
0
def search_mention(now_ts, uid, top_count):
    date = ts2datetime(now_ts)
    #evaluate_max_dict = get_evaluate_max()
    ts = datetime2ts(date)
    stat_results = dict()
    results = dict()
    uid_dict = {}
    for i in range(1,8):
        ts = ts - DAY
        try:
            result_string = r_cluster.hget('at_' + str(ts), str(uid))
        except:
            result_string = ''
        if not result_string:
            continue
        result_dict = json.loads(result_string)
        for at_uname in result_dict:
            try:
                stat_results[at_uname] += result_dict[at_uname]
            except:
                stat_results[at_uname] = result_dict[at_uname]
    sort_stat_results = sorted(stat_results.items(), key=lambda x:x[1], reverse=True)
    # print sort_stat_results

    out_portrait_list = []
    out_list = stat_results.keys()

    #use to get user information from user profile
    out_query_list = [{'match':{'uname':item}} for item in out_list]
    if len(out_query_list) != 0:
        query = [{'bool':{'should': out_query_list}}]
        try:
            out_profile_result = es_user_profile.search(index=profile_index_name, doc_type=profile_index_type, body={'query':{'bool':{'must':query}}, 'size':100})['hits']['hits']
        except:
            out_profile_result = []
    else:
        out_profile_result = []
    out_in_profile_list = []
    bci_search_id_list = []

    for out_item in out_profile_result:
        source = out_item['_source']
        uname = source['nick_name']
        uid = source['uid']
        location = source['location']
        friendsnum = source['friendsnum']
        out_portrait_list.append([uid, uname, stat_results[uname], '', location, friendsnum, ''])
        out_in_profile_list.append(uname)
        #use to search bci history
        bci_search_id_list.append(uid)
    out_out_profile_list = list(set(out_list) - set(out_in_profile_list))
    for out_out_item in out_out_profile_list:
        out_portrait_list.append(['', out_out_item, stat_results[out_out_item],'', '', '', ''])
    
    #add index from bci_history
    new_out_portrait_list = []
    try:
        bci_history_result = es_bci_history.mget(index=bci_history_index_name, doc_type=bci_history_index_type, body={'ids': bci_search_id_list}, fields=['user_fansnum', 'weibo_month_sum', 'user_friendsnum'])['docs']
    except:
        bci_history_result = []
    iter_count = 0
    for out_portrait_item in out_portrait_list:
        append_dict = {}
        try:
            bci_history_item = bci_history_result[iter_count]
        except:
            bci_history_item = {}
        new_out_portrait_item = out_portrait_item
        append_dict['uid'] = out_portrait_item[0]
        append_dict['uname'] = out_portrait_item[1]
        append_dict['count'] = out_portrait_item[2]
        if bci_history_item:
            if bci_history_item['found'] == True:
                fansnum = bci_history_item['fields']['user_fansnum'][0]
                user_weibo_count = bci_history_item['fields']['weibo_month_sum'][0]
                user_friendsnum = bci_history_item['fields']['user_friendsnum'][0]
            else:
                fansnum = ''
                user_weibo_count = ''
                user_friendsnum = ''
        else:
            fansnum = ''
            user_weibo_count = ''
            user_friendsnum = ''
        append_dict['fansnum'] = fansnum
        append_dict['weibo_count'] = user_weibo_count
        append_dict['friendsnum'] = user_friendsnum
        # new_out_portrait_item[3] = fansnum
        # new_out_portrait_item[6] = user_weibo_count
        # new_out_portrait_item[-2] = user_friendsnum
        #new_out_portrait_list.append(new_out_portrait_item)
        new_out_portrait_list.append(append_dict)
        iter_count += 1
        #print append_dict
    return new_out_portrait_list  #  uid,名字,提及次数,粉丝数,注册地,关注数,微博数
コード例 #19
0
def get_user_detail(date, input_result, status, user_type="influence", auth=""):
    results = []
    if status=='show_in':
        uid_list = input_result
    if status=='show_compute':
        uid_list = input_result.keys()
    if status=='show_in_history':
        uid_list = input_result.keys()
    if date!='all':
        index_name = 'bci_' + ''.join(date.split('-'))
    else:
        now_ts = time.time()
        now_date = ts2datetime(now_ts)
        index_name = 'bci_' + ''.join(now_date.split('-'))
    index_type = 'bci'
    user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs']
    user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs']
    max_evaluate_influ = get_evaluate_max(index_name)
    for i in range(0, len(uid_list)):
        uid = uid_list[i]
        bci_dict = user_bci_result[i]
        profile_dict = user_profile_result[i]
        try:
            bci_source = bci_dict['_source']
        except:
            bci_source = None
        if bci_source:
            influence = bci_source['user_index']
            influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10)
            influence = influence * 100
        else:
            influence = ''
        try:
            profile_source = profile_dict['_source']
        except:
            profile_source = None
        if profile_source:
            uname = profile_source['nick_name'] 
            location = profile_source['user_location']
            fansnum = profile_source['fansnum']
            statusnum = profile_source['statusnum']
        else:
            uname = ''
            location = ''
            fansnum = ''
            statusnum = ''
        if status == 'show_in':
            if user_type == "sensitive":
                tmp_ts = datetime2ts(date) - DAY
                tmp_data = r_cluster.hget("sensitive_"+str(tmp_ts), uid)
                if tmp_data:
                    sensitive_dict = json.loads(tmp_data)
                    sensitive_words = sensitive_dict.keys()
                else:
                    senstive_words = []
                results.append([uid, uname, location, fansnum, statusnum, influence, sensitive_words])
            else:
                results.append([uid, uname, location, fansnum, statusnum, influence])
            if auth:
                hashname_submit = "submit_recomment_" + date
                tmp_data = json.loads(r.hget(hashname_submit, uid))
                recommend_list = (tmp_data['operation']).split('&')
                admin_list = []
                admin_list.append(tmp_data['system'])
                admin_list.append(list(set(recommend_list)))
                admin_list.append(len(recommend_list))
                results[-1].extend(admin_list)
        if status == 'show_compute':
            in_date = json.loads(input_result[uid])[0]
            compute_status = json.loads(input_result[uid])[1]
            if compute_status == '1':
                compute_status = '3'
            results.append([uid, uname, location, fansnum, statusnum, influence, in_date, compute_status])
        if status == 'show_in_history':
            in_status = input_result[uid]
            if user_type == "sensitive":
                tmp_ts = datetime2ts(date) - DAY
                tmp_data = r_cluster.hget("sensitive_"+str(tmp_ts), uid)
                if tmp_data:
                    sensitive_dict = json.loads(tmp_data)
                    sensitive_words = sensitive_dict.keys()
                results.append([uid, uname, location, fansnum, statusnum, influence, in_status, sensitive_words])
            else:
                results.append([uid, uname, location, fansnum, statusnum, influence, in_status])

    return results
コード例 #20
0
 sort_ip_timestamp = sorted(ip_max_timestamp_list, key=lambda x:int(x[1]), reverse=True)
 day_ip_list = [ip_item[0] for ip_item in sort_ip_timestamp]
 try:
     now_ip = sort_ip_timestamp[0][0]
     now_city = ip2city(now_ip)
 except:
     now_ip = ''
     now_city = ''
 results['now_ip'] = [now_ip, now_city]
 #main ip
 day_result = {}
 week_result = {}
 for i in range(7, 0, -1):
     timestamp = now_date_ts - i * DAY
     try:
         ip_time_string = r_cluster.hget('new_ip_'+str(timestamp), uid)
     except:
         ip_time_string = {}
     if ip_time_string:
         ip_time_dict = json.loads(ip_time_string)
     else:
         ip_time_dict = {}
     for ip in ip_time_dict:
         ip_time_list = ip_time_dict[ip].split('&')
         for ip_timestamp in ip_time_list:
             ip_timesegment = (int(ip_timestamp) - timestamp) / IP_TIME_SEGMENT
             if ip_timesegment not in day_result:
                 day_result[ip_timesegment] = {}
             try:
                 day_result[ip_timesegment][ip] += 1
             except:
コード例 #21
0
 sort_ip_timestamp = sorted(ip_max_timestamp_list, key=lambda x:int(x[1]), reverse=True)
 day_ip_list = [ip_item[0] for ip_item in sort_ip_timestamp]
 try:
     now_ip = sort_ip_timestamp[0][0]
     now_city = ip2city(now_ip)
 except:
     now_ip = ''
     now_city = ''
 results['now_ip'] = [now_ip, now_city]
 #main ip
 day_result = {}
 week_result = {}
 for i in range(7, 0, -1):
     timestamp = now_date_ts - i * DAY
     try:
         ip_time_string = r_cluster.hget('new_ip_'+str(timestamp), uid)
     except:
         ip_time_string = {}
     if ip_time_string:
         ip_time_dict = json.loads(ip_time_string)
     else:
         ip_time_dict = {}
     for ip in ip_time_dict:
         ip_time_list = ip_time_dict[ip].split('&')
         for ip_timestamp in ip_time_list:
             ip_timesegment = (int(ip_timestamp) - timestamp) / IP_TIME_SEGMENT
             if ip_timesegment not in day_result:
                 day_result[ip_timesegment] = {}
             try:
                 day_result[ip_timesegment][ip] += 1
             except:
コード例 #22
0
def get_user_detail(date, input_result, status, user_type="influence", auth=""):
    bci_date = ts2datetime(datetime2ts(date) - DAY)
    results = []
    if status=='show_in':
        uid_list = input_result
    if status=='show_compute':
        uid_list = input_result.keys()
    if status=='show_in_history':
        uid_list = input_result.keys()
    if date!='all':
        index_name = 'bci_' + ''.join(bci_date.split('-'))
    else:
        now_ts = time.time()
        now_date = ts2datetime(now_ts)
        index_name = 'bci_' + ''.join(now_date.split('-'))
    index_type = 'bci'
    user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs']
    user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs']
    max_evaluate_influ = get_evaluate_max(index_name)
    for i in range(0, len(uid_list)):
        uid = uid_list[i]
        bci_dict = user_bci_result[i]
        profile_dict = user_profile_result[i]
        try:
            bci_source = bci_dict['_source']
        except:
            bci_source = None
        if bci_source:
            influence = bci_source['user_index']
            influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10)
            influence = influence * 100
        else:
            influence = ''
        try:
            profile_source = profile_dict['_source']
        except:
            profile_source = None
        if profile_source:
            uname = profile_source['nick_name'] 
            location = profile_source['user_location']
            fansnum = profile_source['fansnum']
            statusnum = profile_source['statusnum']
        else:
            uname = ''
            location = ''
            fansnum = ''
            statusnum = ''
        if status == 'show_in':
            if user_type == "sensitive":
                tmp_ts = datetime2ts(date) - DAY
                tmp_data = r_cluster.hget("sensitive_"+str(tmp_ts), uid)
                if tmp_data:
                    sensitive_dict = json.loads(tmp_data)
                    sensitive_words = sensitive_dict.keys()
                else:
                    sensitive_words = []
                results.append([uid, uname, location, fansnum, statusnum, influence, sensitive_words])
            else:
                results.append([uid, uname, location, fansnum, statusnum, influence])
            if auth:
                hashname_submit = "submit_recomment_" + date
                tmp_data = json.loads(r.hget(hashname_submit, uid))
                recommend_list = (tmp_data['operation']).split('&')
                admin_list = []
                admin_list.append(tmp_data['system'])
                admin_list.append(list(set(recommend_list)))
                admin_list.append(len(recommend_list))
                results[-1].extend(admin_list)
        if status == 'show_compute':
            in_date = json.loads(input_result[uid])[0]
            compute_status = json.loads(input_result[uid])[1]
            if compute_status == '1':
                compute_status = '3'
            results.append([uid, uname, location, fansnum, statusnum, influence, in_date, compute_status])
        if status == 'show_in_history':
            in_status = input_result[uid]
            if user_type == "sensitive":
                tmp_ts = datetime2ts(date) - DAY
                tmp_data = r_cluster.hget("sensitive_"+str(tmp_ts), uid)
                if tmp_data:
                    sensitive_dict = json.loads(tmp_data)
                    sensitive_words = sensitive_dict.keys()
                results.append([uid, uname, location, fansnum, statusnum, influence, in_status, sensitive_words])
            else:
                results.append([uid, uname, location, fansnum, statusnum, influence, in_status])

    return results