コード例 #1
0
def main(args):
    p_list = ProcessorFactory.make_process()

    for i, p in enumerate(p_list):
        get_main_logger(get_version()).info(f"<< {i} fold start  >>")
        p.data_preprocess()
        p.load_condition()
        best_score = p.training()
        get_main_logger(get_version()).info(__fold_log(best_score, get_version(), i))
        get_main_logger(get_version()).info(f"<< {i} fold finish >>")
コード例 #2
0
 def load_model(self):
     task_name = self.config["summary"]["task"]
     if is_kagglekernel():
         model_dir = Path(__file__).absolute().parents[3] / "model{}_aptos2019".format(get_version())
     else:
         model_dir = Path(__file__).absolute().parents[1] / "model"
     w_path = model_dir / "{}_{}.pth".format(get_version(), self.fold)
     model_config = self.config["train"]["model"]
     model_module = import_module("model." + model_config["name"])
     model = getattr(model_module, "get_" + model_config["name"])(task=task_name, weight=torch.load(w_path))
     self.model = model.to(self.device)
コード例 #3
0
        def wrapper(*args, **kargs):
            version = get_version()
            method_name = dargs[0]
            start = time.time()

            get_main_logger(version).info(f"====>> start  {method_name}")

            result = func(*args, **kargs)
            elapsed_time = int(time.time() - start)
            minits, sec = divmod(elapsed_time, 60)
            hour, minits = divmod(minits, 60)

            get_main_logger(version).info(
                f"<<==== finish {method_name}: [elapsed time] >> {hour:0>2}:{minits:0>2}:{sec:0>2}"
            )
            return result
コード例 #4
0
    def __init__(self, fold):
        """
        process abs class.

        Notes
        -----
        [version, fold] is can't access from child class.
        So, log utils should be implemented in this class.
        """
        self.__version = str(get_version())
        self.__fold = str(fold)

        log_list = [
            "epoch", "train_loss", "valid_loss", "train_qwk", "valid_qwk"
        ]
        self.__log_df = pd.DataFrame(index=None, columns=log_list)
        create_train_logger(self.__version + "_" + self.__fold)
        get_train_logger(self.__version + "_" + self.__fold).debug(
            "\t".join(log_list))
コード例 #5
0
    def __load_config(self):
        """
        Loading yaml file.

        Returns
        -------
        config : dict
            information of process condition.
        """
        version = get_version()
        config_dir = Path(__file__).parents[1] / "config"
        config_file_list = list(config_dir.glob(f"{version}*.yml"))

        if len(config_file_list) > 1:
            print(f"Duplicate Config File Error. >> version : {version}")
            raise AssertionError

        with open(config_file_list[0], "r") as f:
            config_dict = yaml.safe_load(f)

        return config_dict
コード例 #6
0
    for i, p in enumerate(p_list):
        get_main_logger(get_version()).info(f"<< {i} fold start  >>")
        p.data_preprocess()
        p.load_condition()
        best_score = p.training()
        get_main_logger(get_version()).info(__fold_log(best_score, get_version(), i))
        get_main_logger(get_version()).info(f"<< {i} fold finish >>")


def __fold_log(result, version, fold):
    text = "\n\t== [{}] {} fold best ==\n\tepoch\t\t: {}\n\ttrain_loss\t: {}\n\tvalid_loss\t: {}\n\ttrain_qwk\t: {}\n\tvalid_qwk\t: {}".format(
        str(version),
        fold,
        result["epoch"],
        result["train_loss"],
        result["valid_loss"],
        result["train_qwk"],
        result["valid_qwk"]
    )
    return text


if __name__ == "__main__":
    gc.enable()
    version = get_version()
    create_main_logger(version)
    try:
        main(get_option())
    except NotImplementedError:
        get_main_logger(version).info("Not Implemented Exception Occured.")
コード例 #7
0
    def inference(self):
        batch_size = self.config["dataloader"]["batch_size"]
        self.model = self.model.to(self.device)
        self.model.eval()

        for i, data in enumerate(self.test_loader):
            inputs = data["image"].to(self.device, dtype=torch.float)
            outputs = self.model(inputs)
            if torch.cuda.is_available():
                outputs = outputs.cpu()
            self.predict[i * batch_size:(i + 1) * batch_size] = np.argmax(outputs.detach().numpy(), axis=1)

        if is_kagglekernel():
            submit_path = str(Path(__file__).absolute().parents[4] / "working" / "submission.csv")
            print(submit_path)
        else:
            submit_path = str(Path(__file__).absolute().parents[1] / "data" / "submit" / "{}.csv".format(get_version()))

        submission_df = pd.read_csv(self.__input_path() / "sample_submission.csv")
        submission_df["diagnosis"] = self.predict.astype(int)
        submission_df.to_csv(submit_path, index=False)