def test_extra(): """Returns dict of extrapolation testing modules.""" sample_args_pure = composition.PreSampleArgs(1, 1, *_ENTROPY_EXTRAPOLATE) add_sub_sample_args_pure = composition.PreSampleArgs( 1, 1, *_ADD_SUB_ENTROPY_EXTRAPOLATE) train_length = arithmetic.length_range_for_entropy(_ENTROPY_TRAIN[1])[1] def extrapolate_length(): return random.randint( train_length + 1, train_length + _EXTRAPOLATE_EXTRA_LENGTH) def add_sub_multiple_longer(): return add_sub_multiple(_INT, sample_args_pure, length=extrapolate_length()) def mul_div_multiple_longer(): return mul_div_multiple(_INT, sample_args_pure, length=extrapolate_length()) def mixed_longer(): return mixed(_INT, sample_args_pure, length=extrapolate_length()) return { 'add_or_sub_big': functools.partial( add_or_sub, None, add_sub_sample_args_pure), 'mul_big': functools.partial(mul, None, sample_args_pure), 'div_big': functools.partial(div, None, sample_args_pure), 'add_sub_multiple_longer': add_sub_multiple_longer, 'mul_div_multiple_longer': mul_div_multiple_longer, 'mixed_longer': mixed_longer, }
def _make_modules(entropy, num_modules_composed): """Returns modules given "difficulty" parameters.""" fns = { 'gcd': gcd, 'lcm': lcm, 'div_remainder': div_remainder, 'is_prime': is_prime, 'is_factor': is_factor, 'round_number': round_number, 'place_value': place_value, 'list_prime_factors': list_prime_factors, } # These modules don't have both pure and composed. modules = { 'base_conversion': functools.partial(base_conversion, *entropy), } sample_args_pure = composition.PreSampleArgs(1, 1, *entropy) sample_args_composed = composition.PreSampleArgs(num_modules_composed[0], num_modules_composed[1], *entropy) for name, module in six.iteritems(fns): modules[name] = functools.partial(module, None, sample_args_pure) modules[name + '_composed'] = functools.partial( module, None, sample_args_composed) return modules
def _make_modules(entropy, add_sub_entropy): """Returns modules given "difficulty" parameters.""" sample_args_pure = composition.PreSampleArgs(1, 1, *entropy) add_sub_sample_args_pure = composition.PreSampleArgs(1, 1, *add_sub_entropy) # TODO(b/124039105): consider composed modules? return { # Addition and subtraction of integers (and decimals) 'add_or_sub': functools.partial( add_or_sub, None, add_sub_sample_args_pure), 'add_sub_multiple': functools.partial( add_sub_multiple, _INT, sample_args_pure), 'add_or_sub_in_base': functools.partial( add_or_sub_in_base, sample_args_pure), # Multiplication and division 'mul': functools.partial(mul, None, sample_args_pure), 'div': functools.partial(div, None, sample_args_pure), 'mul_div_multiple': functools.partial( mul_div_multiple, _INT_OR_RATIONAL, sample_args_pure), # All together! 'mixed': functools.partial(mixed, _INT_OR_RATIONAL, sample_args_pure), # And some other arithmetic-related stuff. 'nearest_integer_root': functools.partial( nearest_integer_root, sample_args_pure), 'simplify_surd': functools.partial(simplify_surd, None, sample_args_pure), }
def _make_modules(entropy): """Returns modules given "difficulty" parameters.""" sample_args_pure = composition.PreSampleArgs(1, 1, *entropy) sample_args_composed = composition.PreSampleArgs(2, 4, *entropy) sample_args_mixed = composition.PreSampleArgs(1, 4, *entropy) return { 'coefficient_named': functools.partial(coefficient_named, None, sample_args_pure), 'evaluate': functools.partial(evaluate, None, sample_args_pure), 'evaluate_composed': functools.partial(evaluate, None, sample_args_composed), # TODO(b/124038948): consider doing pure sample args for 'add'? 'add': functools.partial(add, None, sample_args_mixed), 'expand': functools.partial(expand, None, sample_args_pure), 'collect': functools.partial(collect, None, sample_args_pure), 'compose': functools.partial(compose, None, sample_args_mixed), # Rearranging powers: 'simplify_power': functools.partial(simplify_power, None, sample_args_pure), }
def _make_modules(entropy): """Returns modules given "difficulty" parameters.""" sample_args_pure = composition.PreSampleArgs(1, 1, *entropy) sample_args_composed = composition.PreSampleArgs(2, 4, *entropy) return { 'differentiate_composed': functools.partial(differentiate_univariate, None, sample_args_composed), 'differentiate': functools.partial(differentiate, None, sample_args_pure), }
def test_extra(): """Returns dict of extrapolation testing modules.""" sample_args_pure = composition.PreSampleArgs(1, 1, *_ENTROPY_EXTRAPOLATE) def sort_count(): lower = _sort_count_range(_ENTROPY_TRAIN[1])[1] return random.randint(lower + 1, lower + _EXTRAPOLATION_EXTRA_COUNT) def closest_count(): lower = _closest_count_range(_ENTROPY_TRAIN[1])[1] return random.randint(lower + 1, lower + _EXTRAPOLATION_EXTRA_COUNT) def kth_biggest_more(): return kth_biggest(sample_args_pure, count=sort_count()) def sort_more(): return sort(sample_args_pure, count=sort_count()) def closest_more(): return closest(sample_args_pure, count=closest_count()) return { 'kth_biggest_more': kth_biggest_more, 'sort_more': sort_more, 'closest_more': closest_more, }
def test_extra(): """Returns dict of extrapolation testing modules.""" sample_args_pure = composition.PreSampleArgs(1, 1, *_ENTROPY_EXTRAPOLATE) return { 'round_number_big': functools.partial(round_number, None, sample_args_pure), 'place_value_big': functools.partial(place_value, None, sample_args_pure), }
def _make_modules(entropy): """Returns modules given "difficulty" parameters.""" sample_args_pure = composition.PreSampleArgs(1, 1, *entropy) sample_args_composed = composition.PreSampleArgs(2, 4, *entropy) return { 'pair': functools.partial(pair, sample_args_pure), 'pair_composed': functools.partial(pair, sample_args_composed), 'kth_biggest': functools.partial(kth_biggest, sample_args_pure), 'kth_biggest_composed': functools.partial(kth_biggest, sample_args_composed), 'closest': functools.partial(closest, sample_args_pure), 'closest_composed': functools.partial(closest, sample_args_composed), 'sort': functools.partial(sort, sample_args_pure), 'sort_composed': functools.partial(sort, sample_args_composed), }