コード例 #1
0
ファイル: test_lake_id_function.py プロジェクト: guziy/RPN
def main(nc_path_to_directions=""):
    ds = Dataset(nc_path_to_directions)

    margin = 20

    var_name = "accumulation_area"
    data = ds.variables[var_name][margin:-margin, margin:-margin]

    data = np.ma.masked_where(data <= 0, data)

    # flow directions
    fldr = ds.variables["flow_direction_value"][:][margin:-margin, margin:-margin]
    lkfr = ds.variables["lake_fraction"][:][margin:-margin, margin:-margin]
    lkouts = ds.variables["lake_outlet"][:][margin:-margin, margin:-margin]


    lkids = calculate_lake_ids(fldr, lkfr, lkouts)



    # plotting
    i_shifts, j_shifts = direction_and_value.flowdir_values_to_shift(fldr)
    lons, lats = [ds.variables[key][margin:-margin, margin:-margin] for key in ["lon", "lat"]]
    bsmap = gc.get_basemap(lons=lons, lats=lats)

    x, y = bsmap(lons, lats)
    fig = plt.figure(figsize=(15, 15))


    img = bsmap.pcolormesh(x, y, lkids)
    bsmap.colorbar(img)

    bsmap.pcolormesh(x, y, lkouts, cmap="gray_r")

    nx, ny = x.shape
    inds_j, inds_i = np.meshgrid(range(ny), range(nx))
    inds_i_next = inds_i + i_shifts
    inds_j_next = inds_j + j_shifts

    inds_i_next = np.ma.masked_where((inds_i_next == nx) | (inds_i_next == -1), inds_i_next)
    inds_j_next = np.ma.masked_where((inds_j_next == ny) | (inds_j_next == -1), inds_j_next)

    u = np.ma.masked_all_like(x)
    v = np.ma.masked_all_like(x)

    good = (~inds_i_next.mask) & (~inds_j_next.mask)
    u[good] = x[inds_i_next[good], inds_j_next[good]] - x[inds_i[good], inds_j[good]]
    v[good] = y[inds_i_next[good], inds_j_next[good]] - y[inds_i[good], inds_j[good]]

    bsmap.quiver(x, y, u, v,
                 pivot="tail", width=0.0005, scale_units="xy", headlength=20, headwidth=15, scale=1)

    bsmap.drawcoastlines(linewidth=0.5)

    bsmap.drawrivers(color="b")

    # plt.savefig(nc_path_to_directions[:-3] + "png", bbox_inches="tight")

    plt.show()
コード例 #2
0
ファイル: plot_accumulation_area.py プロジェクト: guziy/RPN
def plot_acc_area_with_glaciers():
    gmask_vname = "VF"
    gmask_level = 2
    # gmask_path = "/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/geophys_West_NA_0.25deg_144x115_GLNM_PRSF_CanHR85"
    gmask_path = "/RESCUE/skynet3_rech1/huziy/CNRCWP/Calgary_flood/geophys_CORDEX_NA_0.11deg_695x680_filled_grDes_barBor_Crop2Gras_peat"
    
    # stab reading of the glacier mask
    # r = RPN(gmask_path)
    # gmask = r.get_first_record_for_name_and_level(varname=gmask_vname,
    #                                              level=gmask_level)
    
    r = RPN("/RESCUE/skynet3_rech1/huziy/CNRCWP/Calgary_flood/pm2013061400_00000000p")
    r.get_first_record_for_name("PR") # Because I almost sure that PR is there
    proj_params = r.get_proj_parameters_for_the_last_read_rec()
    rll = RotatedLatLon(**proj_params)
    lons, lats = r.get_longitudes_and_latitudes_for_the_last_read_rec()
    basemap = rll.get_basemap_object_for_lons_lats(lons2d=lons, lats2d=lats, resolution="i")
    # gmask = np.ma.masked_where(gmask < 0.01, gmask)
    gmask = np.ma.masked_all(lons.shape)
    mask_value = 0.25
    gmask[~gmask.mask] = mask_value

    path = "/RESCUE/skynet3_rech1/huziy/Netbeans Projects/Java/DDM/directions_WestCaUs_dx0.11deg.nc"
    # path = "/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/infocell_West_NA_0.25deg_104x75_GLNM_PRSF_CanHR85_104x75.nc"
    ds = Dataset(path)


    margin = 20

    var_name = "accumulation_area"
    data = ds.variables[var_name][margin:-margin, margin:-margin]

    data = np.ma.masked_where(data <= 0, data)

    # flow directions
    fldr = ds.variables["flow_direction_value"][:][margin:-margin, margin:-margin]

    i_shifts, j_shifts = direction_and_value.flowdir_values_to_shift(fldr)



    x, y = basemap(lons, lats)
    fig = plt.figure(figsize=(15, 15))

    dx = (x[-1, -1] - x[0, 0]) / float(x.shape[0])
    dy = (y[-1, -1] - y[0, 0]) / float(y.shape[1])

    x1 = x - dx / 2.0
    y1 = y - dy / 2.0

    # im = basemap.pcolormesh(x1, y1, data, norm=LogNorm(vmin=1e3, vmax=1e7), cmap=cm.get_cmap("jet", 12))
    # cb = basemap.colorbar(im)
    # cb.ax.tick_params(labelsize=25)

    cmap = cm.get_cmap("gray_r", 10)

    basemap.pcolormesh(x1, y1, gmask, cmap=cmap, vmin=0., vmax=1.)

    nx, ny = x.shape
    inds_j, inds_i = np.meshgrid(range(ny), range(nx))
    inds_i_next = inds_i + i_shifts
    inds_j_next = inds_j + j_shifts

    inds_i_next = np.ma.masked_where((inds_i_next == nx) | (inds_i_next == -1), inds_i_next)
    inds_j_next = np.ma.masked_where((inds_j_next == ny) | (inds_j_next == -1), inds_j_next)


    u = np.ma.masked_all_like(x)
    v = np.ma.masked_all_like(x)

    good = (~inds_i_next.mask) & (~inds_j_next.mask)
    u[good] = x[inds_i_next[good], inds_j_next[good]] - x[inds_i[good], inds_j[good]]
    v[good] = y[inds_i_next[good], inds_j_next[good]] - y[inds_i[good], inds_j[good]]

    basemap.quiver(x, y, u, v,
                   pivot="tail", width=0.0005, scale_units="xy", headlength=20, headwidth=15, scale=1)

    basemap.drawcoastlines(linewidth=0.5)

    basemap.drawrivers(color="b")

    # plt.legend([Rectangle((0, 0), 5, 5, fc=cmap(mask_value)), ], ["Glaciers", ], loc=3)

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/athabasca/athabasca_dissolved", "atabaska",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/fraizer/fraizer", "frazier",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/South_sas/South_sas_dissolved", "south_sask",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/north_sas/north_sas", "north_sask",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/watersheds_up_sas/watershed_up_sas_proj",
    #                      "upsas",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/network/network", "rivers",
    #                      zorder=2, linewidth=0.5, color="b")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/network_up_sas/network_up_sout_sas_proj", "network",
    #                      zorder=2, linewidth=0.5, color="b")


    basemap.readshapefile("/skynet3_exec2/aganji/NE_can/bow_river/bow_projected", "basin", color="m", linewidth=2)

    # plt.savefig("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/directions.png", bbox_inches="tight")
    plt.savefig("/RESCUE/skynet3_rech1/huziy/CNRCWP/Calgary_flood/directions.png", bbox_inches="tight")
    
    plt.show()
コード例 #3
0
def plot_positions_of_station_list(ax, stations, model_points, basemap, cell_manager, fill_upstream_areas=True):
    assert isinstance(ax, Axes)

    from util import direction_and_value

    delta = 1.0 / float(len(model_points))
    darkness = 0

    cmap = cm.get_cmap(name="jet", lut = len(model_points))


    artists = []
    labels = []

    if None not in stations:
        st_to_mp = dict(list(zip(stations, model_points)))
        stlist_sorted = list(sorted(stations, key=lambda st: st.drainage_km2, reverse=True))
        mplist_sorted = [st_to_mp[s] for s in stlist_sorted]
    else:
        mp_to_st = dict(list(zip(model_points, stations)))
        mplist_sorted = list(sorted(model_points, key=lambda mp: mp.latitude, reverse=True))
        stlist_sorted = [mp_to_st[mp] for mp in mplist_sorted]


    for the_station, the_model_point in zip(stlist_sorted, mplist_sorted):
        assert the_station is None or isinstance(the_station, Station)
        assert isinstance(the_model_point, ModelPoint)

        assert isinstance(cell_manager, CellManager)

        x, y = basemap(cell_manager.lons2d, cell_manager.lats2d)


        if the_station is not None:
            x_station, y_station = basemap(the_station.longitude, the_station.latitude)
            point_info = "{0}".format(the_station.id)
        else:
            x_station, y_station = basemap(the_model_point.longitude, the_model_point.latitude)
            point_info = "({0}, {1})".format(the_model_point.ix, the_model_point.jy)

        basemap.scatter(x_station, y_station, c="r", s=20, ax=ax, linewidths=0.5, zorder=2)

        # show upstream cells
        if fill_upstream_areas:
            ups_mask = cell_manager.get_mask_of_upstream_cells_connected_with_by_indices(the_model_point.ix, the_model_point.jy)

            x1d_start = x[ups_mask == 1]
            y1d_start = y[ups_mask == 1]
            fld1d = cell_manager.flow_directions[ups_mask == 1]
            i_upstream, j_upstream = np.where(ups_mask == 1)


            labels.append(point_info)



            ishift, jshift = direction_and_value.flowdir_values_to_shift(fld1d)

            print(type(i_upstream[0]), type(ishift[0]))

            sub_i_upstream_next = i_upstream + ishift
            sub_j_upstream_next = j_upstream + jshift

            u = x[sub_i_upstream_next, sub_j_upstream_next] - x1d_start
            v = y[sub_i_upstream_next, sub_j_upstream_next] - y1d_start

            u2d = np.ma.masked_all_like(x)
            v2d = np.ma.masked_all_like(y)

            u2d[i_upstream, j_upstream] = u
            v2d[i_upstream, j_upstream] = v

            # basemap.quiver(x, y, u2d, v2d, angles="xy", scale_units="xy", scale=1, ax=ax)

            img = basemap.pcolormesh(x, y, np.ma.masked_where(ups_mask < 0.5, ups_mask) * darkness,
                                     cmap= cmap,
                                     ax=ax, vmax=1, vmin=0)


            p = Rectangle((0, 0), 1, 1, fc=cmap(darkness))
            artists.append(p)

        va = "top"
        ha = "left" if the_station.id in ["093806", "081007"] else "right"
        yshift = -2 if the_station.id in ["093806", "081007"] else -2
        xshift = -2
        ax.annotate("{}".format(the_station.id), (x_station, y_station),
                    ha=ha, va=va, textcoords="offset points", xytext=(xshift, yshift),
                    font_properties=FontProperties(size=12))
        # ax.text(x_station, y_station, point_info, bbox=dict(facecolor="white"))
        darkness += delta

    # ax.legend(artists, labels, handleheight = 1, ncol = 3, loc=2)
    basemap.drawcoastlines(linewidth=cpp.COASTLINE_WIDTH)
    basemap.drawrivers(cpp.COASTLINE_WIDTH)
コード例 #4
0
def plot_acc_area_with_glaciers(
        gmask_vname: str = "VF",
        gmask_level=2,
        gmask_path="/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/geophys_West_NA_0.25deg_144x115_GLNM_PRSF_CanHR85",
        route_data_path="/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/directions_north_america_0.25deg_glaciers.nc",
        lons_target=None,
        lats_target=None,
        basin_shape_files=None):

    plot_scatter = False

    # stab reading of the glacier mask
    with RPN(gmask_path) as r:
        gmask = r.get_first_record_for_name_and_level(varname=gmask_vname,
                                                      level=gmask_level)

        # r = RPN("/RESCUE/skynet3_rech1/huziy/CNRCWP/Calgary_flood/pm2013061400_00000000p")
        r.get_first_record_for_name(
            "VF")  # Because I almost sure that PR is there
        proj_params = r.get_proj_parameters_for_the_last_read_rec()
        rll = RotatedLatLon(**proj_params)
        lons_gmask, lats_gmask = r.get_longitudes_and_latitudes_for_the_last_read_rec(
        )

        gl_fraction_limit = 0.01

        gmask = np.ma.masked_where(gmask < gl_fraction_limit, gmask)
        mask_value = 0.25
        gmask[~gmask.mask] = mask_value

    if str(route_data_path).endswith(".nc"):
        print("route_data_path ends with .nc => assuming netcdf format: {}".
              format(route_data_path))
        with Dataset(route_data_path) as ds:
            var_name = "accumulation_area"
            data = ds.variables[var_name][:]
            # flow directions
            fldr = ds.variables["flow_direction_value"][:]

            coord_names = ["lon", "lat"] if "lon" in ds.variables else [
                "longitudes", "latitudes"
            ]
            lons_route, lats_route = [ds.variables[k] for k in coord_names]

    else:
        print(
            "route_data_path does not end with .nc => assuming rpn format: {}".
            format(route_data_path))
        with RPN(route_data_path) as r:
            data = r.get_first_record_for_name("FACC")
            fldr = r.get_first_record_for_name("FLDR")

            lons_route, lats_route = r.get_longitudes_and_latitudes_for_the_last_read_rec(
            )

    # do the spatial interpolation if required
    xg, yg, zg = lat_lon.lon_lat_to_cartesian(lons_gmask.flatten(),
                                              lats_gmask.flatten())
    xr, yr, zr = lat_lon.lon_lat_to_cartesian(lons_route.flatten(),
                                              lats_route.flatten())

    if lons_target is None or lats_target is None:
        lons_target, lats_target = lons_route, lats_route
        xt, yt, zt = xr, yr, zr
    else:
        xt, yt, zt = lat_lon.lon_lat_to_cartesian(lons_target.flatten(),
                                                  lats_target.flatten())

    basemap = rll.get_basemap_object_for_lons_lats(lons2d=lons_target,
                                                   lats2d=lats_target,
                                                   resolution="i")

    ktree_route = KDTree(list(zip(xr, yr, zr)))
    dists_route, inds_route = ktree_route.query(list(zip(xt, yt, zt)))
    data = data.flatten()[inds_route].reshape(lons_target.shape)
    fldr = fldr.flatten()[inds_route].reshape(lons_target.shape)

    ktree_gmask = KDTree(list(zip(xg, yg, zg)))
    dists_gmask, inds_gmask = ktree_gmask.query(list(zip(xt, yt, zt)))
    gmask = gmask.flatten()[inds_gmask].reshape(lons_target.shape)

    data = np.ma.masked_where(data <= 0, data)

    i_shifts, j_shifts = direction_and_value.flowdir_values_to_shift(fldr)

    xx, yy = basemap(lons_target, lats_target)
    fig = plt.figure(figsize=(15, 15))

    dx = (xx[-1, -1] - xx[0, 0]) / float(xx.shape[0])
    dy = (yy[-1, -1] - yy[0, 0]) / float(yy.shape[1])

    x1 = xx - dx / 2.0
    y1 = yy - dy / 2.0

    # Uncomment to plot the accumulation areas
    im = basemap.pcolormesh(x1,
                            y1,
                            data,
                            norm=LogNorm(vmin=1e3, vmax=1e7),
                            cmap=cm.get_cmap("jet", 12))
    cb = basemap.colorbar(im)

    cmap = cm.get_cmap("gray_r", 10)

    basemap.pcolormesh(x1, y1, gmask, cmap=cmap, vmin=0., vmax=1.)

    nx, ny = xx.shape
    inds_j, inds_i = np.meshgrid(range(ny), range(nx))
    inds_i_next = inds_i + i_shifts
    inds_j_next = inds_j + j_shifts

    inds_i_next = np.ma.masked_where((inds_i_next == nx) | (inds_i_next == -1),
                                     inds_i_next)
    inds_j_next = np.ma.masked_where((inds_j_next == ny) | (inds_j_next == -1),
                                     inds_j_next)

    u = np.ma.masked_all_like(xx)
    v = np.ma.masked_all_like(xx)

    good = (~inds_i_next.mask) & (~inds_j_next.mask)
    u[good] = xx[inds_i_next[good], inds_j_next[good]] - xx[inds_i[good],
                                                            inds_j[good]]
    v[good] = yy[inds_i_next[good], inds_j_next[good]] - yy[inds_i[good],
                                                            inds_j[good]]

    basemap.quiver(xx,
                   yy,
                   u,
                   v,
                   pivot="tail",
                   width=0.0005,
                   scale_units="xy",
                   headlength=20,
                   headwidth=15,
                   scale=1)

    basemap.drawcoastlines(linewidth=0.5, zorder=5)

    basemap.drawrivers(color="lightcoral", zorder=5, linewidth=3)

    plt.legend([
        Rectangle((0, 0), 5, 5, fc=cmap(mask_value)),
    ], [
        r"Glacier ($\geq {}\%$)".format(gl_fraction_limit * 100),
    ],
               loc=3)

    watershed_bndry_width = 4

    if basin_shape_files is not None:
        for i, the_shp in enumerate(basin_shape_files):
            basemap.readshapefile(the_shp[:-4],
                                  "basin_{}".format(i),
                                  zorder=2,
                                  color="m",
                                  linewidth=watershed_bndry_width)

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/athabasca/athabasca_dissolved", "atabaska",
    #                       zorder=2, linewidth=watershed_bndry_width, color="m")
    #
    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/fraizer/fraizer", "frazier",
    #                       zorder=2, linewidth=watershed_bndry_width, color="m")
    #
    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/South_sas/South_sas_dissolved", "south_sask",
    #                       zorder=2, linewidth=watershed_bndry_width, color="m")
    #
    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/north_sas/north_sas", "north_sask",
    #                       zorder=2, linewidth=watershed_bndry_width, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/watersheds_up_sas/watershed_up_sas_proj",
    #                      "upsas",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/network/network", "rivers",
    #                      zorder=2, linewidth=0.5, color="b")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/network_up_sas/network_up_sout_sas_proj", "network",
    #                      zorder=2, linewidth=0.5, color="b")

    if plot_scatter:
        points_lat = [51.54, 49.2476]
        points_lon = [-122.277, -122.784]

        point_x, point_y = basemap(points_lon, points_lat)
        basemap.scatter(point_x, point_y, c="g", s=20, zorder=3)

    plt.savefig("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/directions_only.png",
                bbox_inches="tight",
                dpi=300)
    # plt.savefig("/RESCUE/skynet3_rech1/huziy/CNRCWP/Calgary_flood/directions.png", bbox_inches="tight")

    plt.show()
コード例 #5
0
ファイル: plot_directions.py プロジェクト: guziy/RPN
def plot_directions(nc_path_to_directions="", grid_config=gc, margin=20, shape_path_to_focus_polygons=None):
    """

    :param margin: margin=20 corresponds to the usual free zone
    :param grid_config:
    :param nc_path_to_directions:
    :param shape_path_to_focus_polygons: if Not None, the path to the polygons
        Everything outside the specified polygons is masked

    """

    fig = plt.figure(figsize=(15, 15))

    ds = Dataset(nc_path_to_directions)

    var_name = "accumulation_area"
    data = ds.variables[var_name][margin:-margin, margin:-margin]

    data = np.ma.masked_where(data <= 0, data)

    # flow directions
    fldr = ds.variables["flow_direction_value"][margin:-margin, margin:-margin]

    i_shifts, j_shifts = direction_and_value.flowdir_values_to_shift(fldr)

    lons, lats = [ds.variables[key][margin:-margin, margin:-margin] for key in ["lon", "lat"]]

    reg_of_interest = None
    if shape_path_to_focus_polygons is not None:
        reg_of_interest = get_mask(lons, lats, shp_path=shape_path_to_focus_polygons) > 0

        i_list, j_list = np.where(reg_of_interest)

        mask_margin = 5  # margin of the mask in grid points
        i_min = min(i_list) - mask_margin
        i_max = max(i_list) + mask_margin

        j_min = min(j_list) - mask_margin
        j_max = max(j_list) + mask_margin

        bsmap = grid_config.get_basemap(
            lons=lons[i_min : i_max + 1, j_min : j_max + 1], lats=lats[i_min : i_max + 1, j_min : j_max + 1]
        )

        assert isinstance(bsmap, Basemap)
        bsmap.readshapefile(shapefile=shape_path_to_focus_polygons[:-4], name="basin", linewidth=1, color="m")

    else:
        bsmap = grid_config.get_basemap(lons=lons, lats=lats)

    x, y = bsmap(lons, lats)

    nx, ny = x.shape
    inds_j, inds_i = np.meshgrid(range(ny), range(nx))
    inds_i_next = inds_i + i_shifts
    inds_j_next = inds_j + j_shifts

    inds_i_next = np.ma.masked_where((inds_i_next == nx) | (inds_i_next == -1), inds_i_next)
    inds_j_next = np.ma.masked_where((inds_j_next == ny) | (inds_j_next == -1), inds_j_next)

    u = np.ma.masked_all_like(x)
    v = np.ma.masked_all_like(x)

    good = (~inds_i_next.mask) & (~inds_j_next.mask)
    u[good] = x[inds_i_next[good], inds_j_next[good]] - x[inds_i[good], inds_j[good]]
    v[good] = y[inds_i_next[good], inds_j_next[good]] - y[inds_i[good], inds_j[good]]

    bsmap.fillcontinents(color="0.2", lake_color="aqua")
    bsmap.drawmapboundary(fill_color="aqua")

    bsmap.quiver(
        x, y, u, v, pivot="tail", width=0.0005, scale_units="xy", headlength=20, headwidth=15, scale=1, zorder=5
    )

    bsmap.drawcoastlines(linewidth=0.5)

    bsmap.drawrivers(color="b")

    plt.savefig(nc_path_to_directions[:-3] + ".png", bbox_inches="tight")
コード例 #6
0
ファイル: cell_manager.py プロジェクト: jiaojiashuang/RPN
    def get_model_points_for_stations(self, station_list, lake_fraction=None,
                                      drainaige_area_reldiff_limit=None, nneighbours=4):
        """
        returns a map {station => modelpoint} for comparison modeled streamflows with observed
        :rtype   dict
        """


        # if drainaige_area_reldiff_limit is None:
        #     drainaige_area_reldiff_limit = self.DEFAULT_DRAINAGE_AREA_RELDIFF_MIN

        # if nneighbours == 1:
        #     raise Exception("Searching over 1 neighbor is not very secure and not implemented yet")

        station_to_model_point = {}
        model_acc_area = self.accumulation_area_km2
        model_acc_area_1d = model_acc_area.flatten()

        grid = np.indices(model_acc_area.shape)

        for s in station_list:

            x, y, z = lat_lon.lon_lat_to_cartesian(s.longitude, s.latitude)

            if s.drainage_km2 is None or nneighbours == 1:
                # return the closest grid point

                dists, inds = self.kdtree.query((x, y, z), k=1)
                ix, jy = [g1.flatten()[inds] for g1 in grid]

                imin = 0
                dists = [dists]

                if s.drainage_km2 is None:
                    print("Using the closest grid point, since the station does not report its drainage area: {}".format(s))

            else:

                if s.drainage_km2 < self.characteristic_distance ** 2 * 1e-12:
                    print("skipping {0}, because drainage area is too small: {1} km**2".format(s.id, s.drainage_km2))
                    continue

                assert isinstance(s, Station)
                dists, inds = self.kdtree.query((x, y, z), k=nneighbours)

                deltaDaMin = np.min(np.abs(model_acc_area_1d[inds] - s.drainage_km2))

                # this returns a  list of numpy arrays
                imin = np.where(np.abs(model_acc_area_1d[inds] - s.drainage_km2) == deltaDaMin)[0][0]

                # deltaDa2D = np.abs(self.accumulation_area_km2 - s.drainage_km2)

                # ij = np.where(deltaDa2D == deltaDaMin)
                ix, jy = grid[0].flatten()[inds][imin], grid[1].flatten()[inds][imin]

                # check if it is not global lake cell (move downstream if it is)
                if lake_fraction is not None:
                    while lake_fraction[ix, jy] >= infovar.GLOBAL_LAKE_FRACTION:
                        di, dj = direction_and_value.flowdir_values_to_shift(self.flow_directions[ix, jy])
                        ix, jy = ix + di, jy + dj


                # check if the gridcell is not too far from the station
                # if dists[imin] > 2 * self.characteristic_distance:
                #    continue

                # check if difference in drainage areas is not too big less than 10 %
                if drainaige_area_reldiff_limit is not None and deltaDaMin / s.drainage_km2 > drainaige_area_reldiff_limit:
                    print("Drainage area relative difference is too high, skipping {}.".format(s.id))
                    print(deltaDaMin / s.drainage_km2, deltaDaMin, s.drainage_km2)
                    continue



            mp = ModelPoint()
            mp.ix = ix
            mp.jy = jy

            mp.longitude = self.lons2d[ix, jy]
            mp.latitude = self.lats2d[ix, jy]

            mp.accumulation_area = self.accumulation_area_km2[ix, jy]

            try:
                mp.distance_to_station = dists[imin]
            except TypeError:
                mp.distance_to_station = float(dists)

            station_to_model_point[s] = mp

            print("mp.accumulation_area_km2={}; s.drainage_km2={}".format(mp.accumulation_area, s.drainage_km2))

            print("Found model point for the station {0}".format(s))

        return station_to_model_point
コード例 #7
0
def plot_flow_directions_and_basin_boundaries(ax, s, sim_name_to_station_to_model_point,
                                              sim_name_to_manager=None):
    assert isinstance(ax, Axes)
    assert isinstance(s, Station)
    assert isinstance(sim_name_to_station_to_model_point, dict)

    mp_list = list(sim_name_to_station_to_model_point.items())[0][1][s]

    #selecting only one (the first model point)
    mp = mp_list[0]

    manager = list(sim_name_to_manager.items())[0][1]
    assert isinstance(manager, Crcm5ModelDataManager)

    flow_in_mask = manager.get_mask_for_cells_upstream(mp.ix, mp.jy)

    lons2d, lats2d = manager.lons2D, manager.lats2D

    i_upstream, j_upstream = np.where(flow_in_mask == 1)

    nx_total, ny_total = lons2d.shape

    imin, imax = np.min(i_upstream), np.max(i_upstream)
    jmin, jmax = np.min(j_upstream), np.max(j_upstream)

    margin = 8
    imin = max(0, imin - margin)
    jmin = max(0, jmin - margin)
    imax = min(nx_total - 1, imax + margin)
    jmax = min(ny_total - 1, jmax + margin)

    sub_lons2d = lons2d[imin:imax + 1, jmin:jmax + 1]
    sub_lats2d = lats2d[imin:imax + 1, jmin:jmax + 1]
    sub_flow_directions = manager.flow_directions[imin:imax + 1, jmin:jmax + 1]
    sub_flow_in_mask = flow_in_mask[imin:imax + 1, jmin:jmax + 1]

    sub_i_upstream, sub_j_upstream = np.where(sub_flow_in_mask == 1)

    basemap = Crcm5ModelDataManager.get_rotpole_basemap_using_lons_lats(
        lons2d=sub_lons2d, lats2d=sub_lats2d, resolution="h"
    )



    #plot all stations
    #stations = sim_name_to_station_to_model_point.items()[0][1].keys()
    x_list = [the_station.longitude for the_station in (s,)]
    y_list = [the_station.latitude for the_station in (s,)]

    basemap_big = Crcm5ModelDataManager.get_rotpole_basemap_using_lons_lats(
        lons2d=lons2d, lats2d=lats2d
    )
    x_list, y_list = basemap_big(x_list, y_list)

    basemap_big.scatter(x_list, y_list, c="r", s=40, linewidths=0, ax=ax)
    basemap_big.drawcoastlines(ax=ax)
    basemap_big.drawrivers(ax=ax)
    ax.annotate(s.id, xy=basemap(s.longitude, s.latitude), xytext=(3, 3), textcoords='offset points',
                font_properties=FontProperties(weight="bold"), bbox=dict(facecolor='w', alpha=1),
                ha="left", va="bottom", zorder=2)

    x_big, y_big = basemap_big(manager.lons2D, manager.lats2D)


    ####zoom to the area of interest
    #axins = zoomed_inset_axes(ax, 3, loc=2)
    displayCoords = ax.transData.transform((x_big[imin, jmin], y_big[imin, jmin]))
    x_shift_fig, y_shift_fig = ax.figure.transFigure.inverted().transform(displayCoords)
    print("After transData", displayCoords)
    print("xshift and yshift", x_shift_fig, y_shift_fig)


    #ax.annotate("yuyu", xy = ( 0.733264985153, 0.477182994408), xycoords = "figure fraction" )



    rect = [0.1, y_shift_fig + 0.1, 0.4, 0.4]
    axins = ax.figure.add_axes(rect)


    #assert isinstance(axins, Axes)



    x, y = basemap(sub_lons2d, sub_lats2d)

    x1d_start = x[sub_flow_in_mask == 1]
    y1d_start = y[sub_flow_in_mask == 1]
    fld1d = sub_flow_directions[sub_flow_in_mask == 1]

    from util import direction_and_value

    ishift, jshift = direction_and_value.flowdir_values_to_shift(fld1d)

    sub_i_upstream_next = sub_i_upstream + ishift
    sub_j_upstream_next = sub_j_upstream + jshift

    u = x[sub_i_upstream_next, sub_j_upstream_next] - x1d_start
    v = y[sub_i_upstream_next, sub_j_upstream_next] - y1d_start

    u2d = np.ma.masked_all_like(x)
    v2d = np.ma.masked_all_like(y)

    u2d[sub_i_upstream, sub_j_upstream] = u
    v2d[sub_i_upstream, sub_j_upstream] = v

    basemap.quiver(x, y, u2d, v2d, angles="xy", scale_units="xy", scale=1, ax=axins)

    x_list = [the_station.longitude for the_station in (s,)]
    y_list = [the_station.latitude for the_station in (s,)]
    x_list, y_list = basemap(x_list, y_list)
    basemap.scatter(x_list, y_list, c="r", s=40, linewidths=0)

    basemap.drawcoastlines(ax=axins)
    basemap.drawrivers(ax=axins)


    #read waterbase file, and plot only the polygons which contain at least one upstream point
    shp_path = "/skynet3_exec1/huziy/Netbeans Projects/Java/DDM/data/shape/waterbase/na_bas_ll_r500m/na_bas_ll_r500m.shp"
    c = fiona.open(shp_path)
    hits = c.filter(bbox=(sub_lons2d[0, 0], sub_lats2d[0, 0], sub_lons2d[-1, -1], sub_lats2d[-1, -1]))
    points = [Point(the_x, the_y) for the_x, the_y in zip(x1d_start, y1d_start)]

    selected_polygons = []
    for feature in hits:
        new_coords = []
        old_coords = feature["geometry"]["coordinates"]
        #transform to the map coordinates
        for ring in old_coords:
            x1 = [tup[0] for tup in ring]
            y1 = [tup[1] for tup in ring]
            x2, y2 = basemap(x1, y1)
            new_coords.append(list(zip(x2, y2)))
        feature["geometry"]["coordinates"] = new_coords
        poly = shape(feature["geometry"])
        #print poly, type(poly)
        #print feature.keys()
        #print feature["properties"]
        prep_poly = prep.prep(poly)
        hits = list(filter(prep_poly.contains, points))
        if len(hits) > 2:
            selected_polygons.append(feature["geometry"])

    for p in selected_polygons:
        axins.add_patch(PolygonPatch(p, fc="none", ec="b", lw=1.5))

    zoom_lines_color = "#6600FF"
    #set color of the frame
    for child in axins.get_children():
        if isinstance(child, Spine):
            child.set_color(zoom_lines_color)
            child.set_linewidth(3)

    # draw a bbox of the region of the inset axes in the parent axes and
    # connecting lines between the bbox and the inset axes area
    mark_inset(ax, axins, loc1=1, loc2=3, fc="none", ec=zoom_lines_color, lw=3)
    #basemap.readshapefile(, "basin")



    pass
コード例 #8
0
def _plot_station_position(ax, the_station, basemap, cell_manager, the_model_point):
    assert the_station is None or isinstance(the_station, Station)
    assert isinstance(the_model_point, ModelPoint)
    assert isinstance(cell_manager, CellManager)
    assert isinstance(ax, Axes)

    x, y = basemap(cell_manager.lons2d, cell_manager.lats2d)



    # plot the arrows for upstream cells
    ups_mask = cell_manager.get_mask_of_upstream_cells_connected_with_by_indices(the_model_point.ix, the_model_point.jy)

    x1d_start = x[ups_mask == 1]
    y1d_start = y[ups_mask == 1]
    fld1d = cell_manager.flow_directions[ups_mask == 1]
    i_upstream, j_upstream = np.where(ups_mask == 1)

    imin, jmin = i_upstream.min() - 60, j_upstream.min() - 60
    imax, jmax = i_upstream.max() + 40, j_upstream.max() + 40

    nx, ny = x.shape
    imax, jmax = min(imax, nx - 1), min(jmax, ny - 1)
    imin, jmin = max(imin, 0), max(jmin, 0)

    basemap_initial_corners = [
        basemap.llcrnrx, basemap.llcrnry,
        basemap.urcrnrx, basemap.urcrnry
    ]

    basemap.llcrnrx = x[imin, jmin]
    basemap.llcrnry = y[imin, jmin]
    basemap.urcrnrx = x[imax, jmax]
    basemap.urcrnry = y[imax, jmax]

    if the_station is not None:
        x_station, y_station = basemap(the_station.longitude, the_station.latitude)
    else:
        x_station, y_station = basemap(the_model_point.longitude, the_model_point.latitude)

    basemap.scatter(x_station, y_station, c="b", s=100, ax=ax, linewidths=1, zorder=2)
    ax.annotate("{}".format(the_station.id), (x_station, y_station), va="top", ha="right")

    from util import direction_and_value

    ishift, jshift = direction_and_value.flowdir_values_to_shift(fld1d)

    sub_i_upstream_next = i_upstream + ishift
    sub_j_upstream_next = j_upstream + jshift

    u = x[sub_i_upstream_next, sub_j_upstream_next] - x1d_start
    v = y[sub_i_upstream_next, sub_j_upstream_next] - y1d_start

    u2d = np.ma.masked_all_like(x)
    v2d = np.ma.masked_all_like(y)

    u2d[i_upstream, j_upstream] = u
    v2d[i_upstream, j_upstream] = v

    # basemap.quiver(x, y, u2d, v2d, angles="xy", scale_units="xy", scale=1, ax=ax)
    basemap.pcolormesh(x, y, np.ma.masked_where(ups_mask < 0.5, ups_mask) * 0.5, cmap=cm.get_cmap(name="gray"),
                       ax=ax, vmax=1, vmin=0, zorder=1)

    basemap.drawcoastlines(linewidth=cpp.COASTLINE_WIDTH)

    # put back the initial corners of the basemap
    basemap.llcrnrx, basemap.llcrnry, basemap.urcrnrx, basemap.urcrnry = basemap_initial_corners

    return ups_mask
コード例 #9
0
ファイル: plot_directions.py プロジェクト: jiaojiashuang/RPN
def plot_directions(nc_path_to_directions="", grid_config=gc, margin=20, shape_path_to_focus_polygons=None):
    """

    :param margin: margin=20 corresponds to the usual free zone
    :param grid_config:
    :param nc_path_to_directions:
    :param shape_path_to_focus_polygons: if Not None, the path to the polygons
        Everything outside the specified polygons is masked

    """

    fig = plt.figure(figsize=(15, 15))

    ds = Dataset(nc_path_to_directions)




    var_name = "accumulation_area"
    data = ds.variables[var_name][margin:-margin, margin:-margin]

    data = np.ma.masked_where(data <= 0, data)

    # flow directions
    fldr = ds.variables["flow_direction_value"][margin:-margin, margin:-margin]

    i_shifts, j_shifts = direction_and_value.flowdir_values_to_shift(fldr)

    lons, lats = [ds.variables[key][margin:-margin, margin:-margin] for key in ["lon", "lat"]]

    reg_of_interest = None
    if shape_path_to_focus_polygons is not None:
        reg_of_interest = get_mask(lons, lats, shp_path=shape_path_to_focus_polygons) > 0

        i_list, j_list = np.where(reg_of_interest)

        mask_margin = 5  # margin of the mask in grid points
        i_min = min(i_list) - mask_margin
        i_max = max(i_list) + mask_margin

        j_min = min(j_list) - mask_margin
        j_max = max(j_list) + mask_margin

        bsmap = grid_config.get_basemap(lons=lons[i_min:i_max + 1, j_min:j_max + 1], lats=lats[i_min:i_max + 1, j_min:j_max + 1])

        assert isinstance(bsmap, Basemap)
        bsmap.readshapefile(shapefile=shape_path_to_focus_polygons[:-4], name="basin", linewidth=1, color="m")

    else:
        bsmap = grid_config.get_basemap(lons=lons, lats=lats)

    x, y = bsmap(lons, lats)


    nx, ny = x.shape
    inds_j, inds_i = np.meshgrid(range(ny), range(nx))
    inds_i_next = inds_i + i_shifts
    inds_j_next = inds_j + j_shifts

    inds_i_next = np.ma.masked_where((inds_i_next == nx) | (inds_i_next == -1), inds_i_next)
    inds_j_next = np.ma.masked_where((inds_j_next == ny) | (inds_j_next == -1), inds_j_next)

    u = np.ma.masked_all_like(x)
    v = np.ma.masked_all_like(x)

    good = (~inds_i_next.mask) & (~inds_j_next.mask)
    u[good] = x[inds_i_next[good], inds_j_next[good]] - x[inds_i[good], inds_j[good]]
    v[good] = y[inds_i_next[good], inds_j_next[good]] - y[inds_i[good], inds_j[good]]

    bsmap.fillcontinents(color='0.2', lake_color='aqua')
    bsmap.drawmapboundary(fill_color="aqua")

    bsmap.quiver(x, y, u, v,
                 pivot="tail", width=0.0005, scale_units="xy", headlength=20, headwidth=15, scale=1, zorder=5)

    bsmap.drawcoastlines(linewidth=0.5)

    bsmap.drawrivers(color="b")


    plt.savefig(nc_path_to_directions[:-3] + ".png", bbox_inches="tight")
コード例 #10
0
def main(nc_path_to_directions=""):
    ds = Dataset(nc_path_to_directions)

    margin = 20

    var_name = "accumulation_area"
    data = ds.variables[var_name][margin:-margin, margin:-margin]

    data = np.ma.masked_where(data <= 0, data)

    # flow directions
    fldr = ds.variables["flow_direction_value"][:][margin:-margin,
                                                   margin:-margin]
    lkfr = ds.variables["lake_fraction"][:][margin:-margin, margin:-margin]
    lkouts = ds.variables["lake_outlet"][:][margin:-margin, margin:-margin]

    lkids = calculate_lake_ids(fldr, lkfr, lkouts)

    # plotting
    i_shifts, j_shifts = direction_and_value.flowdir_values_to_shift(fldr)
    lons, lats = [
        ds.variables[key][margin:-margin, margin:-margin]
        for key in ["lon", "lat"]
    ]
    bsmap = gc.get_basemap(lons=lons, lats=lats)

    x, y = bsmap(lons, lats)
    fig = plt.figure(figsize=(15, 15))

    img = bsmap.pcolormesh(x, y, lkids)
    bsmap.colorbar(img)

    bsmap.pcolormesh(x, y, lkouts, cmap="gray_r")

    nx, ny = x.shape
    inds_j, inds_i = np.meshgrid(range(ny), range(nx))
    inds_i_next = inds_i + i_shifts
    inds_j_next = inds_j + j_shifts

    inds_i_next = np.ma.masked_where((inds_i_next == nx) | (inds_i_next == -1),
                                     inds_i_next)
    inds_j_next = np.ma.masked_where((inds_j_next == ny) | (inds_j_next == -1),
                                     inds_j_next)

    u = np.ma.masked_all_like(x)
    v = np.ma.masked_all_like(x)

    good = (~inds_i_next.mask) & (~inds_j_next.mask)
    u[good] = x[inds_i_next[good], inds_j_next[good]] - x[inds_i[good],
                                                          inds_j[good]]
    v[good] = y[inds_i_next[good], inds_j_next[good]] - y[inds_i[good],
                                                          inds_j[good]]

    bsmap.quiver(x,
                 y,
                 u,
                 v,
                 pivot="tail",
                 width=0.0005,
                 scale_units="xy",
                 headlength=20,
                 headwidth=15,
                 scale=1)

    bsmap.drawcoastlines(linewidth=0.5)

    bsmap.drawrivers(color="b")

    # plt.savefig(nc_path_to_directions[:-3] + "png", bbox_inches="tight")

    plt.show()
コード例 #11
0
def plot_acc_area_with_glaciers():
    gmask_vname = "VF"
    gmask_level = 2
    # gmask_path = "/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/geophys_West_NA_0.25deg_144x115_GLNM_PRSF_CanHR85"
    gmask_path = "/RESCUE/skynet3_rech1/huziy/CNRCWP/Calgary_flood/geophys_CORDEX_NA_0.11deg_695x680_filled_grDes_barBor_Crop2Gras_peat"

    # stab reading of the glacier mask
    # r = RPN(gmask_path)
    # gmask = r.get_first_record_for_name_and_level(varname=gmask_vname,
    #                                              level=gmask_level)

    r = RPN(
        "/RESCUE/skynet3_rech1/huziy/CNRCWP/Calgary_flood/pm2013061400_00000000p"
    )
    r.get_first_record_for_name("PR")  # Because I almost sure that PR is there
    proj_params = r.get_proj_parameters_for_the_last_read_rec()
    rll = RotatedLatLon(**proj_params)
    lons, lats = r.get_longitudes_and_latitudes_for_the_last_read_rec()
    basemap = rll.get_basemap_object_for_lons_lats(lons2d=lons,
                                                   lats2d=lats,
                                                   resolution="i")
    # gmask = np.ma.masked_where(gmask < 0.01, gmask)
    gmask = np.ma.masked_all(lons.shape)
    mask_value = 0.25
    gmask[~gmask.mask] = mask_value

    path = "/RESCUE/skynet3_rech1/huziy/Netbeans Projects/Java/DDM/directions_WestCaUs_dx0.11deg.nc"
    # path = "/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/infocell_West_NA_0.25deg_104x75_GLNM_PRSF_CanHR85_104x75.nc"
    ds = Dataset(path)

    margin = 20

    var_name = "accumulation_area"
    data = ds.variables[var_name][margin:-margin, margin:-margin]

    data = np.ma.masked_where(data <= 0, data)

    # flow directions
    fldr = ds.variables["flow_direction_value"][:][margin:-margin,
                                                   margin:-margin]

    i_shifts, j_shifts = direction_and_value.flowdir_values_to_shift(fldr)

    x, y = basemap(lons, lats)
    fig = plt.figure(figsize=(15, 15))

    dx = (x[-1, -1] - x[0, 0]) / float(x.shape[0])
    dy = (y[-1, -1] - y[0, 0]) / float(y.shape[1])

    x1 = x - dx / 2.0
    y1 = y - dy / 2.0

    # im = basemap.pcolormesh(x1, y1, data, norm=LogNorm(vmin=1e3, vmax=1e7), cmap=cm.get_cmap("jet", 12))
    # cb = basemap.colorbar(im)
    # cb.ax.tick_params(labelsize=25)

    cmap = cm.get_cmap("gray_r", 10)

    basemap.pcolormesh(x1, y1, gmask, cmap=cmap, vmin=0., vmax=1.)

    nx, ny = x.shape
    inds_j, inds_i = np.meshgrid(range(ny), range(nx))
    inds_i_next = inds_i + i_shifts
    inds_j_next = inds_j + j_shifts

    inds_i_next = np.ma.masked_where((inds_i_next == nx) | (inds_i_next == -1),
                                     inds_i_next)
    inds_j_next = np.ma.masked_where((inds_j_next == ny) | (inds_j_next == -1),
                                     inds_j_next)

    u = np.ma.masked_all_like(x)
    v = np.ma.masked_all_like(x)

    good = (~inds_i_next.mask) & (~inds_j_next.mask)
    u[good] = x[inds_i_next[good], inds_j_next[good]] - x[inds_i[good],
                                                          inds_j[good]]
    v[good] = y[inds_i_next[good], inds_j_next[good]] - y[inds_i[good],
                                                          inds_j[good]]

    basemap.quiver(x,
                   y,
                   u,
                   v,
                   pivot="tail",
                   width=0.0005,
                   scale_units="xy",
                   headlength=20,
                   headwidth=15,
                   scale=1)

    basemap.drawcoastlines(linewidth=0.5)

    basemap.drawrivers(color="b")

    # plt.legend([Rectangle((0, 0), 5, 5, fc=cmap(mask_value)), ], ["Glaciers", ], loc=3)

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/athabasca/athabasca_dissolved", "atabaska",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/fraizer/fraizer", "frazier",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/South_sas/South_sas_dissolved", "south_sask",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/north_sas/north_sas", "north_sask",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/watersheds_up_sas/watershed_up_sas_proj",
    #                      "upsas",
    #                      zorder=2, linewidth=3, color="m")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/network/network", "rivers",
    #                      zorder=2, linewidth=0.5, color="b")

    # basemap.readshapefile("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/lat_lon/network_up_sas/network_up_sout_sas_proj", "network",
    #                      zorder=2, linewidth=0.5, color="b")

    basemap.readshapefile(
        "/skynet3_exec2/aganji/NE_can/bow_river/bow_projected",
        "basin",
        color="m",
        linewidth=2)

    # plt.savefig("/RESCUE/skynet3_rech1/huziy/CNRCWP/C3/directions.png", bbox_inches="tight")
    plt.savefig(
        "/RESCUE/skynet3_rech1/huziy/CNRCWP/Calgary_flood/directions.png",
        bbox_inches="tight")

    plt.show()