コード例 #1
0
                              net,
                              args.input_size,
                              batch_size=args.batch_size,
                              crf_iterations=args.crf_iterations,
                              mu=mu,
                              std=std)
"""
    Validate the segmentation
"""
print('[%s] Validating segmentation' % (datetime.datetime.now()))
test_data_labels = read_tif(args.data_labels, dtype='uint8')
test_data_labels = normalize(test_data_labels, 0, 255)
j = jaccard(segmentation, test_data_labels)
d = dice(segmentation, test_data_labels)
a, p, r, f = accuracy_metrics(segmentation, test_data_labels)
print('[%s] RESULTS:' % (datetime.datetime.now()))
print('[%s]     Jaccard: %f' % (datetime.datetime.now(), j))
print('[%s]     Dice: %f' % (datetime.datetime.now(), d))
print('[%s]     Accuracy: %f' % (datetime.datetime.now(), a))
print('[%s]     Precision: %f' % (datetime.datetime.now(), p))
print('[%s]     Recall: %f' % (datetime.datetime.now(), r))
print('[%s]     F-score: %f' % (datetime.datetime.now(), f))
"""
    Write out the results
"""
if args.write_dir is not None:
    print('[%s] Writing the output' % (datetime.datetime.now()))
    imwrite3D(segmentation, args.write_dir, rescale=True)

print('[%s] Finished!' % (datetime.datetime.now()))
コード例 #2
0
    Setup optimization for unsupervised training
"""
print('[%s] Setting up optimization for unsupervised training' % (datetime.datetime.now()))
net = UNetAE(feature_maps=args.fm, levels=args.levels, group_norm=(args.group_norm == 1), lambda_dom=args.lambda_dom, s=args.input_size[0])

"""
    Train the network unsupervised
"""
print('[%s] Training network unsupervised' % (datetime.datetime.now()))
net.train_net(src_train_loader=src_train_loader, src_test_loader=src_test_loader,
              tar_train_loader=tar_train_loader, tar_test_loader=tar_test_loader,
              loss_fn=loss_fn_rec, lr=args.lr, step_size=args.step_size, gamma=args.gamma,
              epochs=args.epochs, test_freq=args.test_freq, print_stats=args.print_stats,
              log_dir=args.log_dir)

"""
    Write out the results
"""
if args.write_dir is not None:
    print('[%s] Running the trained network on the source dataset' % (datetime.datetime.now()))
    src_data = src_test.data
    transform_last_checkpoint = transform(src_data, net, args.input_size, batch_size=args.test_batch_size)
    print('[%s] Writing the output' % (datetime.datetime.now()))
    imwrite3D(transform_last_checkpoint, os.path.join(args.write_dir, 'src_transform'), rescale=True)
    tar_data = tar_test.data
    print('[%s] Running the trained network on the target dataset' % (datetime.datetime.now()))
    transform_last_checkpoint = transform(tar_data, net, args.input_size, batch_size=args.test_batch_size)
    print('[%s] Writing the output' % (datetime.datetime.now()))
    imwrite3D(transform_last_checkpoint, os.path.join(args.write_dir, 'tar_transform'), rescale=True)

print('[%s] Finished!' % (datetime.datetime.now()))
コード例 #3
0
print('[%s]     F-score: %f' % (datetime.datetime.now(), f))
net = torch.load(os.path.join(args.log_dir, 'best_checkpoint.pytorch'))
segmentation_best_checkpoint = segment_pixels(test_data,
                                              net,
                                              args.input_size,
                                              batch_size=args.test_batch_size)
j = jaccard(segmentation_best_checkpoint, test_labels)
d = dice(segmentation_best_checkpoint, test_labels)
a, p, r, f = accuracy_metrics(segmentation_best_checkpoint, test_labels)
print('[%s] RESULTS:' % (datetime.datetime.now()))
print('[%s]     Jaccard: %f' % (datetime.datetime.now(), j))
print('[%s]     Dice: %f' % (datetime.datetime.now(), d))
print('[%s]     Accuracy: %f' % (datetime.datetime.now(), a))
print('[%s]     Precision: %f' % (datetime.datetime.now(), p))
print('[%s]     Recall: %f' % (datetime.datetime.now(), r))
print('[%s]     F-score: %f' % (datetime.datetime.now(), f))
print('[%s] Network performance (best checkpoint): Jaccard=%f - Dice=%f' %
      (datetime.datetime.now(), j, d))
"""
    Write out the results
"""
if args.write_dir is not None:
    print('[%s] Writing the output' % (datetime.datetime.now()))
    imwrite3D(segmentation_last_checkpoint,
              os.path.join(args.write_dir, 'segmentation_last_checkpoint'),
              rescale=True)
    imwrite3D(segmentation_best_checkpoint,
              os.path.join(args.write_dir, 'segmentation_best_checkpoint'),
              rescale=True)

print('[%s] Finished!' % (datetime.datetime.now()))
コード例 #4
0
        net = torch.load(os.path.join(log_dir, 'best_checkpoint.pytorch'))
        segmentation_best_checkpoint = segment(test_data,
                                               net,
                                               input_size,
                                               batch_size=args.test_batch_size)
        j = jaccard(segmentation_best_checkpoint, test_labels)
        d = dice(segmentation_best_checkpoint, test_labels)
        a, p, r, f = accuracy_metrics(segmentation_best_checkpoint,
                                      test_labels)
        print('[%s] Results best checkpoint:' % (datetime.datetime.now()))
        print('[%s]     Jaccard: %f' % (datetime.datetime.now(), j))
        print('[%s]     Dice: %f' % (datetime.datetime.now(), d))
        print('[%s]     Accuracy: %f' % (datetime.datetime.now(), a))
        print('[%s]     Precision: %f' % (datetime.datetime.now(), p))
        print('[%s]     Recall: %f' % (datetime.datetime.now(), r))
        print('[%s]     F-score: %f' % (datetime.datetime.now(), f))
        """
            Write out the results
        """
        if args.write_dir is not None:
            print('[%s] Writing the output' % (datetime.datetime.now()))
            imwrite3D(segmentation_last_checkpoint,
                      os.path.join(write_dir, 'segmentation_last_checkpoint',
                                   str(o)),
                      rescale=True)
            imwrite3D(segmentation_best_checkpoint,
                      os.path.join(write_dir, 'segmentation_best_checkpoint',
                                   str(o)),
                      rescale=True)

print('[%s] Finished!' % (datetime.datetime.now()))