コード例 #1
0
def create_debug_ca_dataset():
    '''
    Create a mini subset of Category_and_Attribute data. Assume standard CA index file and label files already exist.
    '''

    num_train = 10
    num_test = 10
    same_train_test = True

    samples = io.load_json(design_root + 'Label/ca_samples.json')
    attr_label = io.load_data(design_root + 'Label/ca_attr_label.pkl')
    bbox_label = io.load_data(design_root + 'Label/ca_bbox_label_256.pkl')
    lm_label = io.load_data(design_root + 'Label/ca_landmark_label_256.pkl')


    if same_train_test:
        id_list = samples.keys()[0:num_train]
        split = {'train': id_list, 'test': id_list}
    else:
        id_list = samples.keys()[0:(num_train + num_test)]
        split = {'train': id_list[0:num_train], 'test': id_list[num_train::]}


    samples = {s_id:samples[s_id] for s_id in id_list}
    attr_label = {s_id:attr_label[s_id] for s_id in id_list}
    bbox_label = {s_id:bbox_label[s_id] for s_id in id_list}
    lm_label = {s_id:lm_label[s_id] for s_id in id_list}
   

    io.save_json(samples, design_root + 'Label/debugca_samples.json')
    io.save_data(attr_label, design_root + 'Label/debugca_attr_label.pkl')
    io.save_data(bbox_label, design_root + 'Label/debugca_bbox_label.pkl')
    io.save_data(lm_label, design_root + 'Label/debugca_landmark_label.pkl')
    io.save_json(split, design_root + 'Split/debugca_split.json')
コード例 #2
0
    def initialize(self, opt, split):
        self.opt = opt
        self.root = opt.data_root
        self.split = split

        print('loading data ...')
        samples = io.load_json(os.path.join(opt.data_root, opt.fn_sample))
        attr_label = io.load_data(os.path.join(opt.data_root, opt.fn_label))
        attr_entry = io.load_json(os.path.join(opt.data_root, opt.fn_entry))
        attr_split = io.load_json(os.path.join(opt.data_root, opt.fn_split))
        lm_label = io.load_data(os.path.join(opt.data_root, opt.fn_landmark))

        self.id_list = attr_split[split]
        if opt.max_dataset_size != float('inf'):
            self.id_list = self.id_list[0:opt.max_dataset_size]
        self.sample_list = [samples[s_id] for s_id in self.id_list]
        self.attr_label_list = [attr_label[s_id] for s_id in self.id_list]
        self.lm_list = [lm_label[s_id] for s_id in self.id_list]
        self.attr_entry = attr_entry

        # check data
        assert len(self.attr_entry) == len(
            self.attr_label_list[0]
        ) == opt.n_attr, 'Attribute number not match!'
        print('dataset created (%d samples)' % len(self))

        # get transform
        self.to_tensor = transforms.ToTensor()

        if opt.image_normalize == 'imagenet':
            self.tensor_normalize = transforms.Normalize([0.485, 0.456, 0.406],
                                                         [0.229, 0.224, 0.225])
        else:
            self.tensor_normalize = transforms.Normalize([0.5, 0.5, 0.5],
                                                         [0.5, 0.5, 0.5])
コード例 #3
0
    def initialize(self, opt, split):

        self.opt = opt
        self.root = opt.data_root

        # get transform
        transform_list = []

        if opt.resize_or_crop == 'resize':
            # only resize image
            transform_list.append(transforms.Resize(opt.fine_size, Image.BICUBIC))

        elif opt.resize_or_crop == 'resize_and_crop':
            # scale and crop
            transform_list.append(transforms.Resize(opt.load_size, Image.BICUBIC))
            if split == 'train':
                transform_list.append(transforms.RandomCrop(opt.fine_size))
                transform_list.append(transforms.RandomHorizontalFlip())
            else:
                transform_list.append(transforms.CenterCrop(opt.fine_size))

        transform_list.append(transforms.ToTensor())

        if opt.image_normalize == 'imagenet':
            transform_list.append(transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))
        else:
            transform_list.append(transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]))

        self.transform = transforms.Compose(transform_list)


        # load sample list
        print('loading data ...')
        samples = io.load_json(os.path.join(opt.data_root, opt.fn_sample))
        attr_label = io.load_data(os.path.join(opt.data_root, opt.fn_label))
        attr_entry = io.load_json(os.path.join(opt.data_root, opt.fn_entry))
        attr_split = io.load_json(os.path.join(opt.data_root, opt.fn_split))

        self.id_list = attr_split[split]
        if opt.max_dataset_size != float('inf'):
            self.id_list = self.id_list[0:opt.max_dataset_size]

        self.sample_list = [samples[s_id] for s_id in self.id_list]
        self.attr_label_list = [attr_label[s_id] for s_id in self.id_list]
        self.attr_entry = attr_entry

        if opt.joint_cat:
            cat_label = io.load_data(os.path.join(opt.data_root, opt.fn_cat))
            self.cat_list = [cat_label[s_id] for s_id in self.id_list]

        if opt.unmatch:
            np.random.shuffle(self.sample_list)

        # check data
        assert len(self.attr_entry) == len(self.attr_label_list[0]) == opt.n_attr, 'Attribute number not match!'
        print('dataset created (%d samples)' % len(self))
コード例 #4
0
 def _unit_func(idx, pair_list, bidirectional_corr):
     for id_1, id_2 in tqdm.tqdm(pair_list, position=idx):
         pred_1 = io.load_data(hmr_pred_dir1 + id_1 + '.pkl')
         pred_2 = io.load_data(hmr_pred_dir2 + id_2 + '.pkl')
         corr_2to1, vis_mask_2 = calc_correspondence_from_smpl_internal(
             pred_2, pred_1)
         flow_util.write_corr(output_dir + '%s_%s.corr' % (id_2, id_1),
                              corr_2to1, vis_mask_2)
         if bidirectional_corr:
             corr_1to2, vis_mask_1 = calc_correspondence_from_smpl_internal(
                 pred_1, pred_2)
             flow_util.write_corr(output_dir + '%s_%s.corr' % (id_1, id_2),
                                  corr_1to2, vis_mask_1)
    def __init__(self, opt, split='train'):
        assert split in {'train', 'val', 'test'}
        super(Dataset, self).__init__()
        self.opt = opt
        self.split = split
        self.label = io.load_data(opt.fn_label)['label']
        if split in {'train', 'val'}:
            self.id_list = io.load_json(
                opt.fn_split)['train' if split == 'train' else 'test']
            self.image_dir = opt.img_dir
        else:
            self.image_dir = opt.test_dir
            self.id_list = [fn[0:-4] for fn in os.listdir(self.image_dir)]

        if split == 'train':
            self.transform = transforms.Compose([
                transforms.Resize(opt.rescale_size),
                transforms.RandomCrop(opt.crop_size),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
            ])
        else:
            self.transform = transforms.Compose([
                transforms.Resize(opt.rescale_size),
                transforms.CenterCrop(opt.crop_size),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
            ])

        if opt.debug:
            self.id_list = self.id_list[0:64]
コード例 #6
0
 def initialize(self, opt, split):
     self.opt = opt
     self.root = opt.data_root
     if opt.debug:
         split = 'debug'
     self.split = split
     #############################
     # load data
     #############################
     print('loading data ...')
     # data split
     data_split = io.load_json(os.path.join(opt.data_root, opt.fn_split))
     self.pose_label = io.load_data(os.path.join(opt.data_root,
                                                 opt.fn_pose))
     self.img_dir = os.path.join(opt.data_root, opt.img_dir)
     self.seg_dir = os.path.join(opt.data_root, opt.seg_dir)
     self.edge_dir = os.path.join(opt.data_root, opt.edge_dir)
     #############################
     # create index list
     #############################
     self.id_list = data_split[split]
     #############################
     # other
     #############################
     self.tensor_normalize_std = transforms.Normalize([0.5, 0.5, 0.5],
                                                      [0.5, 0.5, 0.5])
     self.color_jitter = transforms.ColorJitter(brightness=0.3,
                                                contrast=0.3,
                                                saturation=0.3,
                                                hue=0.3)
     self.to_pil_image = transforms.ToPILImage()
コード例 #7
0
ファイル: preproc_tps.py プロジェクト: donghaoye/fashionHD
def gather_pose_estimation_result():
    '''
    We use the state-of-the-art human pose estimation method (https://github.com/tensorboy/pytorch_Realtime_Multi-Person_Pose_Estimation) to get key points
    This function is for gathering estimation results.
    '''
    num_key_p = 18
    rst_dir = 'datasets/DeepFashion/Fashion_design/Temp/pose_pkl/'
    split = io.load_json(
        'datasets/DeepFashion/Fashion_design/Split/ca_gan_split_trainval_upper.json'
    )
    id_list = split['train'] + split['test']

    pose_label = {}
    n_fail = 0
    for idx, s_id in enumerate(id_list):
        print('%d/%d : %s' % (idx, len(id_list), s_id))
        fn_pose = rst_dir + s_id + '.pkl'
        if not os.path.isfile(fn_pose):
            pose_label[s_id] = [[-1, -1] for _ in range(num_key_p)]
            n_fail += 1
        else:
            pose = io.load_data(fn_pose)
            assert len(pose) == num_key_p
            # p[i][j] = (x, y, score, id) is the j-th keypoints of i-th type.
            # we assume that j <= 1, because our image contains single person
            pose_label[s_id] = [[p[0][0], p[0][1]] if len(p) > 0 else [-1, -1]
                                for p in pose]

    io.save_data(
        pose_label,
        'datasets/DeepFashion/Fashion_design/Label/ca_gan_pose_label_256.pkl')
    print('%d (out of %d) samples failed' % (n_fail, len(id_list)))
コード例 #8
0
 def initialize(self, opt, split):
     self.opt = opt
     self.data_root = opt.data_root
     self.split = split
     #############################
     # set path / load label
     #############################
     data_split = io.load_json(os.path.join(opt.data_root, opt.fn_split))
     self.img_dir = os.path.join(opt.data_root, opt.img_dir)
     self.seg_dir = os.path.join(opt.data_root, opt.seg_dir)
     self.corr_dir = os.path.join(opt.data_root, opt.corr_dir)
     self.pose_label = io.load_data(os.path.join(opt.data_root,
                                                 opt.fn_pose))
     #############################
     # create index list
     #############################
     self.id_list = data_split[split]
     #############################
     # other
     #############################
     if opt.debug:
         self.id_list = self.id_list[0:32]
     self.tensor_normalize_std = transforms.Normalize([0.5, 0.5, 0.5],
                                                      [0.5, 0.5, 0.5])
     self.to_pil_image = transforms.ToPILImage()
     self.pil_to_tensor = transforms.ToTensor()
     self.color_jitter = transforms.ColorJitter(brightness=0.0,
                                                contrast=0.0,
                                                saturation=0.0,
                                                hue=0.2)
コード例 #9
0
def create_pose_label():
    '''
    create 18-keypoint pose label. follow the setting in VITON
    '''
    pose = io.load_data(zalando_root + 'Source/pose.pkl')
    split = io.load_json(zalando_root + 'Split/zalando_split.json')
    id_list = split['train'] + split['test']

    pose_label = {}
    for idx, s_id in enumerate(id_list):
        print('%d / %d' % (idx, len(id_list)))
        subset = pose[s_id + '_0']['subset'] # [i1, i2, ..., in, totial_score, n]
        candidate = pose[s_id + '_0']['candidate'] # [[x_i, y_i, score_i, id_i]]
        label = []
        for i in subset[0][0:-2]:
            i = int(i)
            if i == -1:
                label.append([-1, -1])
            else:
                x = candidate[i][0]
                y = candidate[i][1]
                label.append([x, y])
        pose_label[s_id] = label

    io.save_data(pose_label, zalando_root + 'Label/zalando_pose_label.pkl')
コード例 #10
0
def create_silhouette():
    # DeepFashion
    #smpl_pred_dir = 'datasets/DF_Pose/3d/hmr_dfm_v2/pred/'
    #output_dir = 'datasets/DF_Pose/Img/silhouette24/'
    #image_split = io.load_json('datasets/DF_Pose/Label/image_split_dfm.json')

    # Market-1501
    smpl_pred_dir = 'datasets/market1501/3d/hmr/pred/'
    output_dir = 'datasets/market1501/Images/silhouette24/'
    image_split = io.load_json('datasets/market1501/Label/image_split.json')

    faces = np.load('scripts/3d/smpl_faces.npy')
    vert2part = io.load_json('scripts/3d/smpl_vert_to_bodypart.json')

    def _func(face_id):
        if face_id == 4294967295:
            return 0
        else:
            verts = faces[face_id]
            part_id = vert2part[verts[0]] + 1
            return part_id

    _vfunc = np.vectorize(_func)

    io.mkdir_if_missing(output_dir)
    id_list = image_split['train'] + image_split['test']
    for sid in tqdm.tqdm(id_list):
        pred = io.load_data(smpl_pred_dir + '%s.pkl' % sid)
        vis = pred['visibility']
        silh = _vfunc(vis).astype(np.uint8)
        silh = cv2.medianBlur(silh, 5)
        imageio.imwrite(output_dir + '%s.bmp' % sid, silh)
コード例 #11
0
ファイル: preproc_ca.py プロジェクト: donghaoye/fashionHD
def create_attr_entry():
    '''
    Create attribute entry list, which contains original 1000 attributes used in Category_and_Attribute benchmark
    '''

    print('loading data...')
    attr_entry_list = io.load_str_list(ca_root +
                                       'Anno/list_attr_cloth.txt')[2::]
    attr_label = io.load_data(design_root + 'Label/ca_attr_label.pkl')
    split = io.load_json(design_root + 'Split/ca_split.json')
    train_ids = set(split['train'])
    attr_mat = np.array(
        [v for k, v in attr_label.iteritems() if k in train_ids],
        dtype=np.float32)

    print('computing positive rates')
    num_sample = len(train_ids)
    pos_rate = attr_mat.sum(axis=0) / num_sample

    attr_entry = []
    for idx, s in enumerate(attr_entry_list):
        s = s.split()
        attr_name = ' '.join(s[0:-1])
        attr_type = int(s[-1])
        attr_entry.append({
            'entry': attr_name,
            'type': attr_type,
            'pos_rate': pos_rate[idx]
        })

    io.save_json(attr_entry, design_root + 'Label/attr_entry.json')
コード例 #12
0
ファイル: preproc_ca.py プロジェクト: donghaoye/fashionHD
def visualize_samples():

    num_sample = 10
    dir_out = 'temp/attr_example'

    io.mkdir_if_missing(dir_out)
    samples = io.load_json(design_root + 'Label/ca_samples.json')
    attr_label = io.load_data(design_root + 'Label/ca_attr_label.pkl')
    attr_entry = io.load_json(design_root + 'Label/attr_entry.json')

    id_set = set(samples.keys())

    for i, att in enumerate(attr_entry):
        print('attribute %d / %d: %s' % (i, len(attr_entry), att['entry']))
        dir_att = os.path.join(dir_out, att['entry'])
        io.mkdir_if_missing(dir_att)
        pos_id_list = [
            s_id for s_id, label in attr_label.iteritems() if label[i] == 1
        ]
        np.random.shuffle(pos_id_list)
        for s_id in pos_id_list[0:num_sample]:
            fn_src = samples[s_id]['img_path']
            fn_tar = os.path.join(dir_att, 'pos_' + s_id + '.jpg')
            shutil.copyfile(fn_src, fn_tar)

        neg_id_list = list(id_set - set(pos_id_list))
        np.random.shuffle(neg_id_list)
        for s_id in neg_id_list[0:num_sample]:
            fn_src = samples[s_id]['img_path']
            fn_tar = os.path.join(dir_att, 'neg_' + s_id + '.jpg')
            shutil.copyfile(fn_src, fn_tar)
コード例 #13
0
def keypoint_guided_tps():

    num_sample = 64
    pair_list = io.load_json(
        'datasets/DF_Pose/Label/pair_split.json')['test'][0:num_sample]
    pose_label = io.load_data('datasets/DF_Pose/Label/pose_label.pkl')
    image_dir = 'datasets/DF_Pose/Img/img_df/'
    seg_dir = 'datasets/DF_Pose/Img/seg-lip_df_revised/'
    output_dir = 'temp/patch_matching/output/tps_keypoint/'
    io.mkdir_if_missing(output_dir)
    tps = cv2.createThinPlateSplineShapeTransformer()

    for i, (id_1, id_2) in enumerate(tqdm.tqdm(pair_list)):
        kp_1 = np.array(pose_label[id_1][1:14],
                        dtype=np.float64).reshape(1, -1, 2)
        kp_2 = np.array(pose_label[id_2][1:14],
                        dtype=np.float64).reshape(1, -1, 2)
        kp_matches = []
        for j in range(kp_1.shape[1]):
            if (kp_1[0, j] >= 0).all() and (kp_2[0, j] >= 0).all():
                kp_matches.append(cv2.DMatch(j, j, 0))
        if len(kp_matches) == 0:
            continue

        tps.estimateTransformation(kp_2, kp_1, kp_matches)
        img_1 = cv2.imread(image_dir + id_1 + '.jpg')
        img_2 = cv2.imread(image_dir + id_2 + '.jpg')

        img_w = tps.warpImage(img_1)
        seg = cv2.imread(seg_dir + id_2 + '.bmp', cv2.IMREAD_GRAYSCALE)
        mask = ((seg == 3) | (seg == 7)).astype(img_w.dtype)[:, :, np.newaxis]
        img_out = img_w * mask + img_2 * (1 - mask)

        cv2.imwrite(output_dir + '%d_%s_%s.jpg' % (i, id_1, id_2), img_out)
        cv2.imwrite(output_dir + 'w%d_%s_%s.jpg' % (i, id_1, id_2), img_w)
コード例 #14
0
ファイル: preproc_tps.py プロジェクト: donghaoye/fashionHD
def create_test_pair():
    np.random.rand(0)
    split = io.load_json(design_root +
                         'Split/ca_gan_split_trainval_upper.json')
    cat_label = io.load_data(design_root + 'Label/ca_cat_label.pkl')
    cat_entry = io.load_json(design_root + 'Label/cat_entry.json')
    # group samples by category label
    cat_to_ids = defaultdict(lambda: [])
    for s_id in split['test']:
        c = cat_label[s_id]
        cat_to_ids[c].append(s_id)
    n = 0
    pair_list = []
    for c, s_list in cat_to_ids.iteritems():
        print('[%d/%d] %s: %d samples...' %
              (n, len(cat_to_ids), cat_entry[c]['entry'], len(s_list)))
        n += 1
        s_list_org = [s_id for s_id in s_list]
        for i in range(len(s_list) - 1):
            j = np.random.randint(i + 1, len(s_list))
            temp = s_list[i]
            s_list[i] = s_list[j]
            s_list[j] = temp
        pair_list += zip(s_list_org, s_list)

    pair_dict = {s_tar: s_src for s_tar, s_src in pair_list}
    io.save_json(pair_dict, design_root + 'Temp/ca_test_tps_pair.json')

    io.save_str_list(pair_dict.keys(),
                     design_root + 'Temp/ca_test_tps_tar.txt')
    io.save_str_list(pair_dict.values(),
                     design_root + 'Temp/ca_test_tps_src.txt')
コード例 #15
0
def run_logreg(quality='high'):
    """
	Runs a simple logistic regression model; first fits the model
	on the training data (70 percent of the total data) and tests on 
	the rest of the data.

	Args:
		none

	Returns:
		none
	"""

    data = io.load_data(quality=quality)
    X, y, class_names = preprocessing.create_data_tensor(data)
    X_train, y_train, X_test, y_test = preprocessing.create_train_test_split(
        X, y, test_size=0.3, shuffle=True)

    # flatten data
    flattened_Xtrain = preprocessing.flatten_matrix(X_train)
    flattened_Xtest = preprocessing.flatten_matrix(X_test)

    # fit logistic regression model
    logreg_model = linear_model.LogisticRegression(multi_class='ovr')
    logreg_model.fit(flattened_Xtrain, y_train)
    y_predict_train = logreg_model.predict(flattened_Xtrain)
    y_predict = logreg_model.predict(flattened_Xtest)

    # print metrics and confusion plot
    analysis.run_analyses(y_predict_train, y_train, y_predict, y_test,
                          class_names)
コード例 #16
0
def create_hmr_pose_label_adapt():
    '''
    This is to create a version of hmr_pose joint, which is adapted to openpose joint:
    - compute "neck" using a regressor, trained useing openpose joints (due to the different definition of neck point"
    - invalidate the joint points which is invalid in dfm_pose
    '''
    from sklearn.linear_model import RidgeCV

    # DeepFashion
    #joint_label = io.load_data('datasets/DF_Pose/Label/pose_label_dfm.pkl')
    #joint_label_hmr = io.load_data('datasets/DF_Pose/Label/pose_label_hmr.pkl')
    #fn_out = 'datasets/DF_Pose/Label/pose_label_hmr_adapt.pkl'

    # Market-1501
    joint_label = io.load_data('datasets/market1501/Label/pose_label.pkl')
    joint_label_hmr = io.load_data(
        'datasets/market1501/Label/pose_label_hmr.pkl')
    fn_out = 'datasets/market1501/Label/pose_label_hmr_adapt.pkl'

    # train a linear regressor, which predict neck point location from left/right shoulder locations
    print('training regressor...')
    pts_dfm = np.array(joint_label.values())  #(N,18,2)
    v = (pts_dfm[:, [1, 2, 5], :].reshape(-1, 6) >= 0).all(axis=1)
    x_train = (pts_dfm[v])[:, [2, 5]].reshape(-1, 4)  #shoulder points
    y_train = (pts_dfm[v])[:, 1].reshape(-1, 2)  #neck points
    reg = RidgeCV(normalize=False)
    reg.fit(x_train, y_train)

    pts_hmr = np.array(joint_label_hmr.values())
    x_test = pts_hmr[:, [2, 5], :].reshape(-1, 4)
    y_test = reg.predict(x_test).reshape(-1, 2)

    # generate adapted joint label
    joint_label_adapt = {}
    for idx, sid in enumerate(tqdm.tqdm(joint_label_hmr.keys())):
        p_h = np.array(joint_label_hmr[sid])
        p_d = np.array(joint_label[sid])
        if (p_h[[2, 5], :] >= 0).all():
            p_h[1, :] = y_test[idx]

        inv = (p_d < 0).any(axis=1) | (p_h < 0).any(axis=1) | (p_h > 255).any(
            axis=1
        )  # invalid joint points in joint_dfm will also be marked as invalid in joint_hmr
        p_h[inv, :] = -1
        joint_label_adapt[sid] = p_h.tolist()

    io.save_data(joint_label_adapt, fn_out)
コード例 #17
0
def pad_image_for_segmentation():
    '''
    resize and padding image for segmentation (using fashionGAN code)
    Todo: add inshop version
    '''

    sz_tar = 256
    output_dir = 'datasets/DeepFashion/Fashion_design/Img/img_ca_pad'

    io.mkdir_if_missing(output_dir)
    samples = io.load_json(design_root + 'Label/ca_samples.json')
    split = io.load_json(design_root + 'Split/ca_gan_split_trainval.json')
    id_list = split['train'] + split['test']

    # update landmark and bbox
    lm_label = io.load_data(design_root + 'Label/ca_landmark_label.pkl')
    bbox_label = io.load_data(design_root + 'Label/ca_bbox_label.pkl')
    lm_label_pad = {}
    bbox_label_pad = {}

    io.save_str_list(id_list, os.path.join(output_dir, 'img_ca_pad.txt'))
    for i, s_id in enumerate(id_list):
        img_org = image.imread(samples[s_id]['img_path_org'])
        h, w = img_org.shape[0:2]

        if h > w:
            img = image.resize(img_org, (-1, sz_tar))
            scale = 1. * sz_tar / h
        else:
            img = image.resize(img_org, (sz_tar, -1))
            scale = 1. * sz_tar / w

        # img = image.pad_square(img, sz_tar, padding_value = 255, mode = 'lefttop')
        # image.imwrite(img, os.path.join(output_dir, s_id + '.jpg'))

        bbox_label_pad[s_id] = [c * scale for c in bbox_label[s_id]]
        lm_label_pad[s_id] = []
        for x, y, v in lm_label[s_id]:
            lm_label_pad[s_id].append([x * scale, y * scale, v])

        print('padding image %d / %d' % (i, len(id_list)))

    io.save_data(lm_label_pad,
                 design_root + 'Label/ca_landmark_label_pad_%d.pkl' % sz_tar)
    io.save_data(bbox_label_pad,
                 design_root + 'Label/ca_bbox_label_pad_%d.pkl' % sz_tar)
コード例 #18
0
 def load_attr_data(self):
     opt = self.opt
     self.samples = io.load_json(os.path.join(opt.data_root, opt.fn_sample))
     self.attr_label = io.load_data(
         os.path.join(opt.data_root, opt.fn_label))
     self.attr_entry = io.load_json(
         os.path.join(opt.data_root, opt.fn_entry))
     self.data_loaded = True
コード例 #19
0
def calc_correspondence_from_smpl():
    '''
    Compute pixel-wise correspondence between image pair by SMPL model (http://smpl.is.tue.mpg.de/). 
    The SMPL fit result is predicted by HMR(https://github.com/akanazawa/hmr), with following format:
        pred = {
            'id': sid,
            'theta': theta,
            'proc_param': proc_param,
            'verts2d': verts2d,
            'verts_z': verts_z,
            'visibility': visibility, # a map with same size of img, each pixel is its corresponding SMPL face index (or 4294967295 if it's corresponding to no face)
        }
    See '/data2/ynli/human3d/hmr/run_hmr.py' for more details
    '''

    # num_pair = 64
    # pair_split_fn = 'datasets/DF_Pose/Label/pair_split.json'
    # hmr_pred_dir = 'temp/3d_hmr/hmr_df_openpose/pred/'
    # output_dir = 'temp/3d_hmr/corr/'

    num_pair = -1
    pair_split_fn = 'datasets/DF_Pose/Label/pair_split_dfm.json'
    hmr_pred_dir = 'datasets/DF_Pose/3d/hmr_dfm/pred/'
    output_dir = 'datasets/DF_Pose/3d/hmr_dfm/corr/'

    io.mkdir_if_missing(output_dir)

    # load pair ids
    pairs = io.load_json(pair_split_fn)
    pair_list = pairs['test'] + pairs['train']
    if num_pair > 0:
        pair_list = pair_list[:num_pair]

    for id_1, id_2 in tqdm.tqdm(pair_list):
        pred_1 = io.load_data(hmr_pred_dir + id_1 + '.pkl')
        pred_2 = io.load_data(hmr_pred_dir + id_2 + '.pkl')

        corr_2to1, vis_mask_2 = calc_correspondence_from_smpl_internal(
            pred_2, pred_1)
        flow_util.write_corr(output_dir + '%s_%s.corr' % (id_2, id_1),
                             corr_2to1, vis_mask_2)

        corr_1to2, vis_mask_1 = calc_correspondence_from_smpl_internal(
            pred_1, pred_2)
        flow_util.write_corr(output_dir + '%s_%s.corr' % (id_1, id_2),
                             corr_1to2, vis_mask_1)
コード例 #20
0
def main():
    data = io.load_data(quality="low")
    X, y, class_names = preprocessing.create_data_tensor(data)
    X_train, y_train, X_test, y_test = preprocessing.create_train_test_split(
        X, y)
    X = preprocessing.scale_spatially(X)

    # for i in class_names:
    # 	# print i
    # 	# print class_names[i]
    # 	# print np.where(y==i)
    # 	# print np.where(y==i)[0]
    # 	# print np.where(y==i)[0].size
    # 	print class_names[i], i, np.where(y==i)[0].size

    # analysis.plot_signals_two_column(data[class_names[y[0]]][0][:, 0:3],
    # 								 X[0, 0:3, :].T,
    # 									['Raw X', 'Raw Y', 'Raw Z'],
    # 									['Resampled X', 'Resampled Y', 'Resampled Z'])

    shop_idx = np.where(y == 3)[0]
    shop_idx = shop_idx[0:6]

    # print X[shop_idx, 0, :].shape
    NUM = 3
    C1 = 0
    C2 = 3
    d1 = X[np.where(y == C1)[0][0:NUM], 2, :].T
    d2 = X[np.where(y == C2)[0][0:NUM], 2, :].T

    d1p = np.roll(d1, -1, 0) - d1
    # d1p = d1p[0:d1.shape[0]-1]
    d1p[-1, :] = d1p[-2, :]

    d2p = np.roll(d2, -1, 0) - d2
    d2p[-1, :] = d2p[-2, :]

    labels1 = [str(class_names[C1]) + ' ' + str(i) for i in xrange(NUM)] + [
        str(class_names[C1]) + '\' ' + str(i) for i in xrange(NUM)
    ]
    labels2 = [str(class_names[C2]) + ' ' + str(i) for i in xrange(NUM)] + [
        str(class_names[C2]) + '\' ' + str(i) for i in xrange(NUM)
    ]

    print d1.shape, d1p.shape
    print d2.shape, d2p.shape

    print np.concatenate((d1, d1p), 1).shape

    # analysis.plot_signals_two_column(np.concatenate((d1, d1p), 1),
    # 								 np.concatenate((d2, d2p), 1),
    # 								labels1,
    # 								labels2)

    print class_names[4]
    d2 = X[np.where(y == 4)[0][0:2], 2, :].T

    analysis.plot_signals(d2, labels2)
コード例 #21
0
def run_svm(quality="high", ablation=False, concat=True):
	"""
	Runs a simple SVM model with a linear kernel; first fits the model
	on the training data (70 percent of the total data) and tests on 
	the rest of the data.

	Args:
		None

	Returns: 
		None
	"""
	data = io.load_data(quality=quality)
	X, y, class_names = preprocessing.create_data_tensor(data)	
	if ablation: 
		run_ablation_svm(X, y, class_names, quality)
		return 
	X_train, y_train, X_test, y_test = preprocessing.create_train_test_split(X, y, test_size=0.3, shuffle=False)

	flattened_Xtrain = preprocessing.flatten_matrix(X_train)
	flattened_Xtest = preprocessing.flatten_matrix(X_test)	

	if concat:
		X_train_400 = np.load('../data/seq_mining_features/k_2-w_2/X_train-400.npy')
		X_test_400 = np.load('../data/seq_mining_features/k_2-w_2/X_test-400.npy')
		y_train_400 = np.load('../data/seq_mining_features/k_2-w_2/y_train-400.npy')
		y_test_400 = np.load('../data/seq_mining_features/k_2-w_2/y_test-400.npy')

		print X_train_400.shape, y_train_400.shape
		print flattened_Xtrain.shape, y_train.shape
		print '-----------'
		print X_test_400.shape, y_test_400.shape
		print flattened_Xtest.shape, y_test.shape

		flattened_Xtrain_concatenated = np.hstack((flattened_Xtrain, X_train_400[:, 0:75]))
		flattened_Xtest_concatenated = np.hstack((flattened_Xtest, X_test_400[:, 0:75]))

		print '-----------'
		print flattened_Xtrain.shape, y_train.shape
		print flattened_Xtest.shape, y_test.shape

	C = 0.01
	# fit svm model
	svm_model = svm.SVC(kernel="linear", C=C, decision_function_shape='ovr')
	svm_model.fit(flattened_Xtrain, y_train)
	y_predict_train = svm_model.predict(flattened_Xtrain)
	y_predict = svm_model.predict(flattened_Xtest)

	analysis.run_analyses(y_predict_train, y_train, y_predict, y_test, class_names, ablation=False, confusion=False)

	print '-----------==================-----------'
	svm_model = svm.SVC(kernel="linear", C=C, decision_function_shape='ovr')
	svm_model.fit(flattened_Xtrain_concatenated, y_train)
	y_predict_train = svm_model.predict(flattened_Xtrain_concatenated)
	y_predict = svm_model.predict(flattened_Xtest_concatenated)

	analysis.run_analyses(y_predict_train, y_train, y_predict, y_test, class_names, ablation=False, confusion=False)
	print '-----------==================-----------'
コード例 #22
0
def divide_vert_into_bodypart():
    '''
    Devide 6890 verts of a SMPL model into 24 parts, each part corresponding to a joint. A vert will be assigned to the joint with the largest vert-to-angle weight.
    May need to run this function under HMR environment
    '''
    smpl_dict = io.load_data('scripts/3d/neutral_smpl_with_cocoplus_reg.pkl')
    weights = smpl_dict['weights']
    vert2part = weights.argmax(axis=1).tolist()
    io.save_json(vert2part, 'scripts/3d/smpl_vert_to_bodypart.json')
コード例 #23
0
def resize_and_pad():
    '''
    resize the image that its longer side equals to new_size. Then pad the image to have the size [new_size, new_size]
    create new pose label at the same time
    '''

    # config
    new_size = 256

    img_root = zalando_root + 'Img/img_zalando/'
    output_dir = zalando_root + 'Img/img_zalando_%d/' % new_size
    split = io.load_json(zalando_root + 'Split/zalando_split.json')
    pose_label = io.load_data(zalando_root + 'Label/zalando_pose_label.pkl')

    io.mkdir_if_missing(output_dir)
    id_list = split['train'] + split['test']
    # id_list = id_list[0:10]
    new_pose_label = {}

    for i, s_id in enumerate(id_list):
        print('%d / %d' % (i, len(id_list)))
        # resize image
        img = cv2.imread(img_root + s_id + '_0.jpg')
        w, h = img.shape[1], img.shape[0]
        if w < h:
            top = 0
            bottom = 0
            left = (h-w)//2
            right = h-w-left
            ratio = new_size/h
        else:
            top = (w-h)//2
            bottom = w-h-top
            left = 0
            right = 0
            ratio = new_size/w

        img = cv2.copyMakeBorder(img, top, bottom, left, right, borderType=cv2.BORDER_REPLICATE)
        img = cv2.resize(img, dsize=(new_size, new_size), interpolation=cv2.INTER_LINEAR)
        cv2.imwrite(output_dir + s_id + '_0.jpg', img)

        # resize clothing image
        img1 = cv2.imread(img_root + s_id + '_1.jpg')
        if not (img1.shape[0] == h and img1.shape[1] == w):
            img1 = cv2.resize(img1, dsize=(w,h))
        img1 = cv2.copyMakeBorder(img1, top, bottom, left, right, borderType=cv2.BORDER_REPLICATE)
        img1 = cv2.resize(img1, dsize=(new_size, new_size), interpolation=cv2.INTER_LINEAR)
        cv2.imwrite(output_dir + s_id + '_1.jpg', img1)

        # modify pose label
        pose = pose_label[s_id]
        new_pose = [[(p[0]+left)*ratio, (p[1]+top)*ratio] if p != [-1,-1] else [-1,-1] for p in pose]
        new_pose_label[s_id] = new_pose

    io.save_data(new_pose_label, zalando_root + 'Label/zalando_pose_label_%d.pkl' % new_size)
コード例 #24
0
def load_test_pair_index():
    num_pair = 12800
    pair_index = io.load_data(
        'datasets/DF_Pose/Anno/NIPS17-test/p_pair_test.p'
    )  # test index used in NIPS17 paper: Pose Guided Person Image Generation
    pair_split = io.load_json('datasets/DF_Pose/Label/pair_split.json')
    # store previous generated pairs
    pair_split['test_disordered_pair'] = pair_split['test']
    # use pair indexes provided in  NIPS17 paper
    pair_split['test'] = [[s1[0:-4], s2[0:-4]]
                          for s1, s2 in pair_index[0:num_pair]]
    np.random.shuffle(pair_split['test'])

    io.save_json(pair_split, 'datasets/DF_Pose/Label/pair_split.json')
コード例 #25
0
def create_dug_ca_gan_dataset():
    num_train = 10
    num_test = 10
    same_train_test = True

    samples = io.load_json(design_root + 'Label/ca_samples.json')
    attr_label = io.load_data(design_root + 'Label/ca_attr_label.pkl')
    bbox_label = io.load_data(design_root + 'Label/ca_bbox_label_256.pkl')
    lm_label = io.load_data(design_root + 'Label/ca_landmark_label_256.pkl')
    seg_path_list = io.load_json(design_root + 'Label/ca_seg_paths.json')
    ca_split = io.load_json(design_root + 'Split/ca_gan_split_trainval_upper.json')

    if same_train_test:
        split = {
            'train': ca_split['train'][0:num_train],
            'test': ca_split['train'][0:num_train]
        }
        id_list = split['train']
    else:
        split = {
            'train': ca_split['train'][0:num_train],
            'test': ca_split['test'][0:num_test]
        }
        id_list = split['train'] + split['test']

    samples = {s_id: samples[s_id] for s_id in id_list}
    attr_label = {s_id:attr_label[s_id] for s_id in id_list}
    bbox_label = {s_id:bbox_label[s_id] for s_id in id_list}
    lm_label = {s_id:lm_label[s_id] for s_id in id_list}
    seg_path_list = {s_id: seg_path_list[s_id] for s_id in id_list}

    io.save_json(samples, design_root + 'Label/debugca_gan_samples.json')
    io.save_data(attr_label, design_root + 'Label/debugca_gan_attr_label.pkl')
    io.save_data(bbox_label, design_root + 'Label/debugca_gan_bbox_label.pkl')
    io.save_data(lm_label, design_root + 'Label/debugca_gan_landmark_label.pkl')
    io.save_json(seg_path_list, design_root + 'Label/debugca_seg_paths.json')
    io.save_json(split, design_root + 'Split/debugca_gan_split.json')
コード例 #26
0
def extract_feature(opt, save_feat=True):

    fn_feat = os.path.join(
        os.path.join('checkpoints', opt.id, 'feat',
                     '%s.pkl' % opt.which_epoch))

    if os.path.isfile(fn_feat):
        print('loading feature from %s' % fn_feat)
        feat_data = io.load_data(fn_feat)
        # feat_data['feat_train']
        # feat_data['feat_test']
        # feat_data['id_list_train']
        # feat_data['id_list_test']

    else:
        # create model
        model = AttributeEncoder()
        model.initialize(opt)
        model.eval()
        feat_data = {
            'feat_train': [],
            'feat_test': [],
            'id_list_train': [],
            'id_list_test': []
        }

        for split in ['train', 'test']:
            loader = CreateDataLoader(opt, split=split)

            for i, data in enumerate(loader):
                model.set_input(data)
                model.extract_feat()
                feat_data['feat_%s' %
                          split].append(model.output['feat'].data.cpu().numpy(
                          ))  # size: batch_size * feat_size
                feat_data['id_list_%s' %
                          split] += data['id']  # list of length batch_size
                print('\r[%s] extract feature from %s samples %d/%d' %
                      (opt.id, split, i, len(loader)),
                      end='')
            print('\n')
            feat_data['feat_%s' % split] = np.vstack(feat_data['feat_%s' %
                                                               split])

        if save_feat:
            io.mkdir_if_missing(os.path.join('checkpoints', opt.id, 'feat'))
            io.save_data(feat_data, fn_feat)

    return feat_data
コード例 #27
0
def create_image_info():
    '''
    create a .mat file containing:
    - id_1
    - id_2
    - image_1
    - image_2
    - image_gen (generated by PoseTranfer_x)
    '''
    image_dir = '/data2/ynli/datasets/DF_Pose/Img/img_df/'
    model_id = 'PoseTransfer_7.5'
    image_gen_dir = '/data2/ynli/Fashion/fashionHD/checkpoints/%s/test/' % model_id

    pair_indices = io.load_json(
        'datasets/DF_Pose/Label/pair_split.json')['test'][0:num_sample]
    pose_label = io.load_data('datasets/DF_Pose/Label/pose_label.pkl')
    id_1 = [p[0] for p in pair_indices]
    id_2 = [p[1] for p in pair_indices]
    image_1 = []
    image_2 = []
    image_gen = []
    scale_2over1 = []

    for i in range(num_sample):
        image_1.append(image_dir + id_1[i] + '.jpg')
        image_2.append(image_dir + id_2[i] + '.jpg')
        image_gen.append(image_gen_dir + '%s_%s.jpg' % (id_1[i], id_2[i]))
        pose_1 = np.array(pose_label[id_1[i]])
        pose_2 = np.array(pose_label[id_2[i]])
        scale_2over1.append(pose_util.relative_scale_from_pose(pose_2, pose_1))

    image_info = {
        'id_1': id_1,
        'id_2': id_2,
        'image_1': image_1,
        'image_2': image_2,
        'image_gen': image_gen,
        'model_id': model_id,
        'scale_2over1': scale_2over1
    }
    data_dict = {
        k: np.array(v, dtype=np.object)
        for k, v in image_info.iteritems()
    }
    io.save_json(image_info, 'temp/patch_matching/label/image_info.json'
                 )  # for other functions in this script
    scipy.io.matlab.savemat(
        'temp/patch_matching/label/image_info.mat', data_dict
    )  # for PatchMatch matlab tools and other matlab implementions
コード例 #28
0
ファイル: gan_dataset.py プロジェクト: donghaoye/fashionHD
    def initialize(self, opt, split):
        self.opt = opt
        self.root = opt.data_root
        self.split = split

        print('loading data ...')
        samples = io.load_json(os.path.join(opt.data_root, opt.fn_sample))
        # attr_label = io.load_data(os.path.join(opt.data_root, opt.fn_label))
        # attr_entry = io.load_json(os.path.join(opt.data_root, opt.fn_entry))
        data_split = io.load_json(os.path.join(opt.data_root, opt.fn_split))
        lm_label = io.load_data(os.path.join(opt.data_root, opt.fn_landmark))
        seg_paths = io.load_json(os.path.join(opt.data_root, opt.fn_seg_path))
        edge_paths = io.load_json(os.path.join(opt.data_root,
                                               opt.fn_edge_path))
        # color_paths = io.load_json(os.path.join(opt.data_root, opt.fn_color_path))
        flx_seg_paths = io.load_json(
            os.path.join(opt.data_root, opt.fn_flx_seg_path))

        self.id_list = data_split[split]
        # self.attr_entry = attr_entry
        if opt.max_dataset_size != float('inf'):
            self.id_list = self.id_list[0:opt.max_dataset_size]
        self.sample_list = [samples[s_id] for s_id in self.id_list]
        # self.attr_label_list = [attr_label[s_id] for s_id in self.id_list]
        self.lm_list = [lm_label[s_id] for s_id in self.id_list]
        self.seg_path_list = [seg_paths[s_id] for s_id in self.id_list]
        self.edge_path_list = [edge_paths[s_id] for s_id in self.id_list]
        # self.color_path_list = [color_paths[s_id] for s_id in self.id_list]
        self.flx_seg_path_list = [flx_seg_paths[s_id] for s_id in self.id_list]

        # check data
        # assert len(self.attr_entry) == len(self.attr_label_list[0]) == opt.n_attr, 'Attribute number not match!'
        print('dataset created (%d samples)' % len(self))

        # get transform
        self.to_tensor = transforms.ToTensor()

        # use standard normalization, which is different from attribute dataset
        # image will be normalized again (under imagenet distribution) before fed into attribute encoder in GAN model
        self.tensor_normalize_std = transforms.Normalize([0.5, 0.5, 0.5],
                                                         [0.5, 0.5, 0.5])
        self.tensor_normalize_imagenet = transforms.Normalize(
            [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        if self.opt.color_jitter:
            self.color_jitter = transforms.ColorJitter(brightness=0.3,
                                                       contrast=0.3,
                                                       saturation=0.3,
                                                       hue=0.3)
            self.to_pil_image = transforms.ToPILImage()
コード例 #29
0
def create_hmr_pose_label():
    '''
        name: [openpose_index, hmr_index]:
        
        nose: 0,14
        neck: 1, 12
        right_shoulder: 2, 8
        right_elow: 3, 7
        right_wrist: 4, 6
        left_shoulder: 5, 9
        left_elbow: 6, 10
        left_wrist: 7, 11
        right_hip: 8, 2
        right_knee: 9, 1
        right_ankle: 10, 0
        left_hip: 11, 3
        left_knee: 12, 4
        left_ankle: 13, 5
        right_eye: 14, 16
        left_eye: 15, 15
        right_ear: 16, 18
        left_ear: 17, 17
        head_top: -, 13
    '''
    # DeepFashion
    #image_split = io.load_json('datasets/DF_Pose/Label/image_split_dfm.json')
    #smpl_pred_dir = 'datasets/DF_Pose/3d/hmr_dfm_v3/pred/'
    #fn_out = 'datasets/DF_pose/Label/pose_label_hmr.pkl'

    # Market-1501
    image_split = io.load_json('datasets/market1501/Label/image_split.json')
    smpl_pred_dir = 'datasets/market1501/3d/hmr/pred/'
    fn_out = 'datasets/market1501/Label/pose_label_hmr.pkl'

    id_list = image_split['train'] + image_split['test']
    kp_order_map = [
        14, 12, 8, 7, 6, 9, 10, 11, 2, 1, 0, 3, 4, 5, 16, 15, 18, 17
    ]

    pose_label_hmr = {}
    for sid in tqdm.tqdm(id_list):
        pred = io.load_data(smpl_pred_dir + '%s.pkl' % sid)
        joints = pred['joints']
        pts = joints[kp_order_map]
        pts[(pts[:, 0] < 0) | (pts[:, 0] > 255) | (pts[:, 1] < 0) |
            (pts[:, 1] > 255)] = -1
        pose_label_hmr[sid] = pts.tolist()
    io.save_data(pose_label_hmr, fn_out)
コード例 #30
0
 def initialize(self, opt, split):
     self.opt = opt
     self.root = opt.data_root
     if opt.debug:
         split = 'debug'
     self.split = split
     #############################
     # load data
     #############################
     print('loading data ...')
     data_split = io.load_json(os.path.join(opt.data_root, opt.fn_split))
     self.img_dir = os.path.join(opt.data_root, opt.img_dir)
     self.seg_dir = os.path.join(opt.data_root, opt.seg_dir)
     self.pose_label = io.load_data(os.path.join(opt.data_root,
                                                 opt.fn_pose))
     #############################
     # create index list
     #############################
     self.id_list = data_split[split]
     #############################
     # other
     #############################
     self.tensor_normalize_std = transforms.Normalize([0.5, 0.5, 0.5],
                                                      [0.5, 0.5, 0.5])
     # self.color_jitter = transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3)
     # self.to_pil_image = transforms.ToPILImage()
     #############################
     # define body limbs
     #############################
     # self.bparts = [
     #     ['lshoulder', 'lhip', 'rhip', 'rshoulder'],
     #     ['lshoulder', 'rshoulder', 'nose'],
     #     ['lshoulder', 'lelbow'],
     #     ['lelbow', 'lwrist'],
     #     ['rshoulder', 'relbow'],
     #     ['relbow', 'rwrist'],
     #     ['lhip', 'lknee'],
     #     ['rhip', 'rknee']]
     self.bparts = [['rshoulder', 'rhip', 'lhip', 'lshoulder'],
                    ['rshoulder', 'lshoulder', 'nose'],
                    ['rshoulder', 'relbow'], ['relbow', 'rwrist'],
                    ['lshoulder', 'lelbow'], ['lelbow', 'lwrist'],
                    ['rhip', 'rknee'], ['lhip', 'lknee']]