criterion = nn.CrossEntropyLoss() model = model.cuda(device) if use_gpu else model criterion = criterion.cuda(device) if use_gpu else criterion # load pretrained model if args.model2load != None: if args.model2load.endswith('.ckpt'): model = load_ckpt_model(model=model, name='fc1', ckpt_file=args.model2load, device=device, param2load=None) elif args.model2load.endswith('.mat'): model = load_mat_model(model=model, name='fc1', mat_file=args.model2load, device=device, param2load=None) elif args.model2load.endswith('.pth'): model = load_pth_model(model=model, name='fc1', pth_file=args.model2load, device=device, param2load=None) else: raise ValueError('The format of %s is not supported' % args.model2load) # Parse the optimizer optimizer = parse_optim(policy=args.optim, params=model.parameters()) # Parse norms
out_dir = os.path.dirname(args.out_file) if out_dir != '' and not os.path.exists(out_dir): os.makedirs(out_dir) # Parse model model = MLP(in_dim=args.in_dim, hidden_dims=args.hidden_dims, out_dim=args.out_dim, nonlinearity=args.nonlinearity) model = model.cuda(device) if use_gpu else model if args.model2load.endswith('.ckpt'): ckpt = torch.load(args.model2load) model.load_state_dict(ckpt) elif args.model2load.endswith('.mat'): model = load_mat_model(model=model, name='fc1', mat_file=args.model2load, device=device) elif args.model2load.endswith('.pth'): model = load_pth_model(model=model, name='fc1', pth_file=args.model2load, device=device) else: raise ValueError('The format of %s is not supported' % args.model2load) # Parse norm norm = args.norm if args.norm > 0 else np.inf # Prepare the item to save configs = {kwarg: value for kwarg, value in args._get_kwargs()} tosave = {
criterion = nn.CrossEntropyLoss() model = model.cuda(device) if use_gpu else model criterion = criterion.cuda(device) if use_gpu else criterion # load pretrained model if args.model2load != None: if args.model2load.endswith('.ckpt'): model = load_ckpt_model(model=model, name='lenet', ckpt_file=args.model2load, device=device, param2load=args.load_mode) elif args.model2load.endswith('.mat'): model = load_mat_model(model=model, name='lenet', mat_file=args.model2load, device=device, param2load=args.load_mode) elif args.model2load.endswith('.pth'): model = load_pth_model(model=model, name='lenet', pth_file=args.model2load, device=device, param2load=args.load_mode) else: raise ValueError('The format of %s is not supported' % args.model2load) # Parse the optimizer if args.frozen_mode == None: optimizer = parse_optim(policy=args.optim, params=model.parameters())