def main(args):
    #
    jsonNs = JsonArgParser(ns.PARAMETERS).parse(
        args.negative_sampling_json_base)

    jsonNs["lr"] = args.lr_ns
    jsonNs["noise_rate"] = args.noise_rate
    jsonNs["num_epochs"] = args.num_epochs
    jsonNs["t"] = args.t
    jsonNs["power"] = args.power
    jsonNs["min_count"] = args.min_count
    jsonNs["save_model"] = args.save_model

    jsonWnn = JsonArgParser(wt.WNN_PARAMETERS).parse(
        args.wnn_with_target_json_base)
    jsonWnn["lr"] = args.lr_wnn
    jsonWnn["target_module"] = args.save_model

    log = logging.getLogger(__name__)

    log.info("Starting unsupervised training")
    ns.mainWnnNegativeSampling(dict2obj(jsonNs))

    log.info("Starting supervised training")
    wt.mainWnn(dict2obj(jsonWnn))
コード例 #2
0
def main():
    nArgs = len(sys.argv)
    if nArgs != 2 and nArgs != 4:
        sys.stderr.write('Syntax error! Expected arguments: <params_file> [<num_folds> <params_dist>]\n')
        sys.stderr.write('\t<params_file>: JSON-formatted file containing parameter values\n')
        sys.stderr.write('\t<num_folds>: number of cross-validation folds used in random search\n')
        sys.stderr.write('\t<params_dist>: JSON-formatted file containing the parameter distributions used in random '
                         'search\n')
        sys.exit(1)

    full_path = os.path.realpath(__file__)
    path = os.path.split(full_path)[0]

    logging.config.fileConfig(os.path.join(path, 'logging.conf'))

    parameters = dict2obj(JsonArgParser(WNN_PARAMETERS).parse(sys.argv[1]))
    mainWnnNer(parameters)
コード例 #3
0
def main():
    full_path = os.path.realpath(__file__)
    path, filename = os.path.split(full_path)
    logging.config.fileConfig(os.path.join(path, 'logging.conf'), defaults={})
    log = logging.getLogger(__name__)

    if len(sys.argv) != 2:
        log.error("Missing argument: <JSON config file>")
        exit(1)

    argsDict = JsonArgParser(PARAMETERS).parse(sys.argv[1])
    args = dict2obj(argsDict, 'ShortDocArguments')
    logging.getLogger(__name__).info(argsDict)

    if args.seed:
        random.seed(args.seed)
        np.random.seed(args.seed)

    lr = args.lr
    startSymbol = args.start_symbol
    endSymbol = args.end_symbol
    numEpochs = args.num_epochs
    shuffle = args.shuffle
    normalizeMethod = args.normalization
    wordWindowSize = args.word_window_size
    hiddenLayerSize = args.hidden_size
    convSize = args.conv_size

    # Load classes for filters.
    filters = []
    for filterName in args.filters:
        moduleName, className = filterName.rsplit('.', 1)
        log.info("Filtro: " + moduleName + " " + className)

        module_ = importlib.import_module(moduleName)
        filters.append(getattr(module_, className)())

    W1 = None
    b1 = None
    W2 = None
    b2 = None

    wordEmbedding = None
    if args.word_embedding:
        log.info("Reading W2v File")
        (wordLexicon, wordEmbedding) = Embedding.fromWord2Vec(args.word_embedding, unknownSymbol="__UNKNOWN__")
        wordLexicon.stopAdd()
    elif args.word_lexicon and args.word_emb_size:
        wordLexicon = Lexicon.fromTextFile(args.word_lexicon, hasUnknowSymbol=False)
        wordEmbedding = Embedding(wordLexicon, embeddingSize=args.word_emb_size)
        wordLexicon.stopAdd()
    else:
        log.error("You must provide argument word_embedding or word_lexicon and word_emb_size")

    # Create the lexicon of labels.
    labelLexicon = None
    if args.labels is not None:
        if args.label_lexicon is not None:
            log.error("Only one of the parameters label_lexicon and labels can be provided!")
            exit(1)
        labelLexicon = Lexicon.fromList(args.labels, hasUnknowSymbol=False)
    elif args.label_lexicon is not None:
        labelLexicon = Lexicon.fromTextFile(args.label_lexicon, hasUnknowSymbol=False)
    else:
        log.error("One of the parameters label_lexicon or labels must be provided!")
        exit(1)

    #
    # Build the network model (Theano graph).
    #

    # TODO: debug
    # theano.config.compute_test_value = 'warn'
    # ex = trainIterator.next()
    # inWords.tag.test_value = ex[0][0]
    # outLabel.tag.test_value = ex[1][0]

    # Matriz de entrada. Cada linha representa um token da oferta. Cada token é
    # representado por uma janela de tokens (token central e alguns tokens
    # próximos). Cada valor desta matriz corresponde a um índice que representa
    # um token no embedding.
    inWords = tensor.lmatrix("inWords")

    # Categoria correta de uma oferta.
    outLabel = tensor.lscalar("outLabel")

    # List of input tensors. One for each input layer.
    inputTensors = [inWords]

    # Whether the word embedding will be updated during training.
    embLayerTrainable = not args.fix_word_embedding

    if not embLayerTrainable:
        log.info("Not updating the word embedding!")

    # Lookup table for word features.
    embeddingLayer = EmbeddingLayer(inWords, wordEmbedding.getEmbeddingMatrix(), trainable=embLayerTrainable)

    # if not args.train and args.load_wordEmbedding:
    #     attrs = np.load(args.load_wordEmbedding)
    #     embeddingLayer.load(attrs)
    #     log.info("Loaded word embedding (shape %s) from file %s" % (
    #         str(attrs[0].shape), args.load_wordEmbedding))

    # A saída da lookup table possui 3 dimensões (numTokens, szWindow, szEmbedding).
    # Esta camada dá um flat nas duas últimas dimensões, produzindo uma saída
    # com a forma (numTokens, szWindow * szEmbedding).
    flattenInput = FlattenLayer(embeddingLayer)

    # Random weight initialization procedure.
    weightInit = GlorotUniform()

    # Convolution layer. Convolução no texto de uma oferta.
    convW = None
    convb = None

    if not args.train and args.load_conv:
        convNPY = np.load(args.load_conv)
        convW = convNPY[0]
        convb = convNPY[1]
        log.info("Loaded convolutional layer (shape %s) from file %s" % (str(convW.shape), args.load_conv))

    convLinear = LinearLayer(flattenInput,
                             wordWindowSize * wordEmbedding.getEmbeddingSize(),
                             convSize, W=convW, b=convb,
                             weightInitialization=weightInit)

    if args.conv_act:
        convOut = ActivationLayer(convLinear, tanh)
    else:
        convOut = convLinear

    # Max pooling layer.
    maxPooling = MaxPoolingLayer(convOut)

    # Hidden layer.
    if not args.train and args.load_hiddenLayer:
        hiddenNPY = np.load(args.load_hiddenLayer)
        W1 = hiddenNPY[0]
        b1 = hiddenNPY[1]
        log.info("Loaded hidden layer (shape %s) from file %s" % (str(W1.shape), args.load_hiddenLayer))

    hiddenLinear = LinearLayer(maxPooling,
                               convSize,
                               hiddenLayerSize,
                               W=W1, b=b1,
                               weightInitialization=weightInit)

    hiddenAct = ActivationLayer(hiddenLinear, tanh)

    # Entrada linear da camada softmax.
    if not args.train and args.load_softmax:
        hiddenNPY = np.load(args.load_softmax)
        W2 = hiddenNPY[0]
        b2 = hiddenNPY[1]
        log.info("Loaded softmax layer (shape %s) from file %s" % (str(W2.shape), args.load_softmax))

    sotmaxLinearInput = LinearLayer(hiddenAct,
                                    hiddenLayerSize,
                                    labelLexicon.getLen(),
                                    W=W2, b=b2,
                                    weightInitialization=ZeroWeightGenerator())

    # Softmax.
    # softmaxAct = ReshapeLayer(ActivationLayer(sotmaxLinearInput, softmax), (1, -1))
    softmaxAct = ActivationLayer(sotmaxLinearInput, softmax)

    # Prediction layer (argmax).
    prediction = ArgmaxPrediction(None).predict(softmaxAct.getOutput())

    # Loss function.
    if args.label_weights is not None and len(args.label_weights) != labelLexicon.getLen():
        log.error("Number of label weights (%d) is different from number of labels (%d)!" % (
            len(args.label_weights), labelLexicon.getLen()))
    nlloe = NegativeLogLikelihoodOneExample(weights=args.label_weights)
    loss = nlloe.calculateError(softmaxAct.getOutput()[0], prediction, outLabel)

    # Input generators: word window.
    inputGenerators = [WordWindowGenerator(wordWindowSize, wordLexicon, filters, startSymbol, endSymbol)]

    # Output generator: generate one label per offer.
    outputGenerators = [TextLabelGenerator(labelLexicon)]
    # outputGenerators = [lambda label: labelLexicon.put(label)]

    evalPerIteration = None
    if args.train:
        trainDatasetReader = ShortDocReader(args.train)
        if args.load_method == "sync":
            log.info("Reading training examples...")
            trainIterator = SyncBatchIterator(trainDatasetReader,
                                              inputGenerators,
                                              outputGenerators,
                                              - 1,
                                              shuffle=shuffle)
            wordLexicon.stopAdd()
        elif args.load_method == "async":
            log.info("Examples will be asynchronously loaded.")
            trainIterator = AsyncBatchIterator(trainDatasetReader,
                                               inputGenerators,
                                               outputGenerators,
                                               - 1,
                                               shuffle=shuffle,
                                               maxqSize=1000)
        else:
            log.error("The argument 'load_method' has an invalid value: %s." % args.load_method)
            sys.exit(1)

        labelLexicon.stopAdd()

        # Get dev inputs and output
        dev = args.dev
        evalPerIteration = args.eval_per_iteration
        if not dev and evalPerIteration > 0:
            log.error("Argument eval_per_iteration cannot be used without a dev argument.")
            sys.exit(1)

        if dev:
            log.info("Reading development examples")
            devReader = ShortDocReader(args.dev)
            devIterator = SyncBatchIterator(devReader,
                                            inputGenerators,
                                            outputGenerators,
                                            - 1,
                                            shuffle=False)
        else:
            devIterator = None
    else:
        trainIterator = None
        devIterator = None

    if normalizeMethod == "minmax":
        log.info("Normalization: minmax")
        wordEmbedding.minMaxNormalization()
    elif normalizeMethod == "mean":
        log.info("Normalization: mean normalization")
        wordEmbedding.meanNormalization()
    elif normalizeMethod == "zscore":
        log.info("Normalization: zscore normalization")
        wordEmbedding.zscoreNormalization()
    elif normalizeMethod:
        log.error("Normalization: unknown value %s" % normalizeMethod)
        sys.exit(1)

    # Decaimento da taxa de aprendizado.
    decay = None
    if args.decay == "none":
        decay = 0.0
    elif args.decay == "linear":
        decay = 1.0
    else:
        log.error("Unknown decay parameter %s." % args.decay)
        exit(1)

    # Algoritmo de aprendizado.
    if args.alg == "adagrad":
        log.info("Using Adagrad")
        opt = Adagrad(lr=lr, decay=decay)
    elif args.alg == "sgd":
        log.info("Using SGD")
        opt = SGD(lr=lr, decay=decay)
    else:
        log.error("Unknown algorithm: %s." % args.alg)
        sys.exit(1)

    # TODO: debug
    # opt.lr.tag.test_value = 0.05

    # Printing embedding information.
    dictionarySize = wordEmbedding.getNumberOfVectors()
    embeddingSize = wordEmbedding.getEmbeddingSize()
    log.info("Dictionary size: %d" % dictionarySize)
    log.info("Embedding size: %d" % embeddingSize)
    log.info("Number of categories: %d" % labelLexicon.getLen())

    # Train metrics.
    trainMetrics = None
    if trainIterator:
        trainMetrics = [
            LossMetric("TrainLoss", loss),
            AccuracyMetric("TrainAccuracy", outLabel, prediction)
        ]

    # Evaluation metrics.
    evalMetrics = None
    if devIterator:
        evalMetrics = [
            LossMetric("EvalLoss", loss),
            AccuracyMetric("EvalAccuracy", outLabel, prediction),
            FMetric("EvalFMetric", outLabel, prediction, labels=labelLexicon.getLexiconDict().values())
        ]

    # Test metrics.
    testMetrics = None
    if args.test:
        testMetrics = [
            LossMetric("TestLoss", loss),
            AccuracyMetric("TestAccuracy", outLabel, prediction),
            FMetric("TestFMetric", outLabel, prediction, labels=labelLexicon.getLexiconDict().values())
        ]

    # TODO: debug
    # mode = theano.compile.debugmode.DebugMode(optimizer=None)
    mode = None
    model = BasicModel(x=inputTensors,
                       y=[outLabel],
                       allLayers=softmaxAct.getLayerSet(),
                       optimizer=opt,
                       prediction=prediction,
                       loss=loss,
                       trainMetrics=trainMetrics,
                       evalMetrics=evalMetrics,
                       testMetrics=testMetrics,
                       mode=mode)

    # Training
    if trainIterator:
        log.info("Training")
        model.train(trainIterator, numEpochs, devIterator, evalPerIteration=evalPerIteration)

    # Saving model after training
        if args.save_wordEmbedding:
            embeddingLayer.saveAsW2V(args.save_wordEmbedding, lexicon=wordLexicon)
            log.info("Saved word to vector to file: %s" % (args.save_wordEmbedding))
        if args.save_conv:
            convLinear.save(args.save_conv)
            log.info("Saved convolution layer to file: %s" % (args.save_conv))
        if args.save_hiddenLayer:
            hiddenLinear.save(args.save_hiddenLayer)
            log.info("Saved hidden layer to file: %s" % (args.save_hiddenLayer))
        if args.save_softmax:
            sotmaxLinearInput.save(args.save_softmax)
            log.info("Saved softmax to file: %s" % (args.save_softmax))

    # Testing
    if args.test:
        log.info("Reading test examples")
        testReader = ShortDocReader(args.test)
        testIterator = SyncBatchIterator(testReader,
                                         inputGenerators,
                                         outputGenerators,
                                         - 1,
                                         shuffle=False)

        log.info("Testing")
        model.test(testIterator)
コード例 #4
0
        testIterator = SyncBatchIterator(testReader,
                                         inputGenerators,
                                         outputGenerators,
                                         -1,
                                         shuffle=False)

        log.info("Testing")
        model.test(testIterator)


def method_name(hiddenActFunction):
    if hiddenActFunction == "tanh":
        return tanh
    elif hiddenActFunction == "sigmoid":
        return sigmoid
    else:
        raise Exception("'hidden_activation_function' value don't valid.")


if __name__ == '__main__':
    full_path = os.path.realpath(__file__)
    path, filename = os.path.split(full_path)

    logging.config.fileConfig(os.path.join(path, 'logging.conf'), defaults={})

    argsDict = JsonArgParser(PARAMETERS).parse(sys.argv[1])
    args = dict2obj(argsDict, 'OfertaArguments')
    logging.getLogger(__name__).info(argsDict)

    main(args)
    jsonNs["lr"] = args.lr_ns
    jsonNs["noise_rate"] = args.noise_rate
    jsonNs["num_epochs"] = args.num_epochs
    jsonNs["t"] = args.t
    jsonNs["power"] = args.power
    jsonNs["min_count"] = args.min_count
    jsonNs["save_model"] = args.save_model

    jsonWnn = JsonArgParser(wt.WNN_PARAMETERS).parse(
        args.wnn_with_target_json_base)
    jsonWnn["lr"] = args.lr_wnn
    jsonWnn["target_module"] = args.save_model

    log = logging.getLogger(__name__)

    log.info("Starting unsupervised training")
    ns.mainWnnNegativeSampling(dict2obj(jsonNs))

    log.info("Starting supervised training")
    wt.mainWnn(dict2obj(jsonWnn))


if __name__ == '__main__':
    full_path = os.path.realpath(__file__)
    path, filename = os.path.split(full_path)

    logging.config.fileConfig(os.path.join(path, 'logging.conf'))

    parameters = dict2obj(JsonArgParser(PARAMETERS).parse(sys.argv[1]))
    main(parameters)
コード例 #6
0
def main():
    full_path = os.path.realpath(__file__)
    path, filename = os.path.split(full_path)
    logging.config.fileConfig(os.path.join(path, 'logging.conf'), defaults={})
    log = logging.getLogger(__name__)

    if len(sys.argv) != 3:
        log.error("Missing argument: <JSON config file> or/and <Input file>")
        exit(1)

    argsDict = JsonArgParser(PARAMETERS).parse(sys.argv[1])
    args = dict2obj(argsDict, 'ShortDocArguments')
    logging.getLogger(__name__).info(argsDict)

    if args.seed:
        random.seed(args.seed)
        np.random.seed(args.seed)

    lr = args.lr
    startSymbol = args.start_symbol
    endSymbol = args.end_symbol
    numEpochs = args.num_epochs
    shuffle = args.shuffle
    normalizeMethod = args.normalization
    wordWindowSize = args.word_window_size
    hiddenLayerSize = args.hidden_size
    convSize = args.conv_size

    # Load classes for filters.
    filters = []
    for filterName in args.filters:
        moduleName, className = filterName.rsplit('.', 1)
        log.info("Filtro: " + moduleName + " " + className)

        module_ = importlib.import_module(moduleName)
        filters.append(getattr(module_, className)())

    W1 = None
    b1 = None
    W2 = None
    b2 = None

    wordEmbedding = None
    if args.word_embedding:
        log.info("Reading W2v File")
        (wordLexicon,
         wordEmbedding) = Embedding.fromWord2Vec(args.word_embedding,
                                                 unknownSymbol="__UNKNOWN__")
        wordLexicon.stopAdd()
    elif args.word_lexicon and args.word_emb_size:
        wordLexicon = Lexicon.fromTextFile(args.word_lexicon,
                                           hasUnknowSymbol=False)
        wordEmbedding = Embedding(wordLexicon,
                                  embeddingSize=args.word_emb_size)
        wordLexicon.stopAdd()
    else:
        log.error(
            "You must provide argument word_embedding or word_lexicon and word_emb_size"
        )

    # Create the lexicon of labels.
    labelLexicon = None
    if args.labels is not None:
        if args.label_lexicon is not None:
            log.error(
                "Only one of the parameters label_lexicon and labels can be provided!"
            )
            exit(1)
        labelLexicon = Lexicon.fromList(args.labels, hasUnknowSymbol=False)
    elif args.label_lexicon is not None:
        labelLexicon = Lexicon.fromTextFile(args.label_lexicon,
                                            hasUnknowSymbol=False)
    else:
        log.error(
            "One of the parameters label_lexicon or labels must be provided!")
        exit(1)

    #
    # Build the network model (Theano graph).
    #

    # TODO: debug
    # theano.config.compute_test_value = 'warn'
    # ex = trainIterator.next()
    # inWords.tag.test_value = ex[0][0]
    # outLabel.tag.test_value = ex[1][0]

    # Matriz de entrada. Cada linha representa um token da oferta. Cada token é
    # representado por uma janela de tokens (token central e alguns tokens
    # próximos). Cada valor desta matriz corresponde a um índice que representa
    # um token no embedding.
    inWords = tensor.lmatrix("inWords")

    # Categoria correta de uma oferta.
    outLabel = tensor.lscalar("outLabel")

    # List of input tensors. One for each input layer.
    inputTensors = [inWords]

    # Whether the word embedding will be updated during training.
    embLayerTrainable = not args.fix_word_embedding

    if not embLayerTrainable:
        log.info("Not updating the word embedding!")

    # Lookup table for word features.
    embeddingLayer = EmbeddingLayer(inWords,
                                    wordEmbedding.getEmbeddingMatrix(),
                                    trainable=embLayerTrainable)

    # if not args.train and args.load_wordEmbedding:
    #     attrs = np.load(args.load_wordEmbedding)
    #     embeddingLayer.load(attrs)
    #     log.info("Loaded word embedding (shape %s) from file %s" % (
    #         str(attrs[0].shape), args.load_wordEmbedding))

    # A saída da lookup table possui 3 dimensões (numTokens, szWindow, szEmbedding).
    # Esta camada dá um flat nas duas últimas dimensões, produzindo uma saída
    # com a forma (numTokens, szWindow * szEmbedding).
    flattenInput = FlattenLayer(embeddingLayer)

    # Random weight initialization procedure.
    weightInit = GlorotUniform()

    # Convolution layer. Convolução no texto de uma oferta.
    convW = None
    convb = None

    if not args.train and args.load_conv:
        convNPY = np.load(args.load_conv)
        convW = convNPY[0]
        convb = convNPY[1]
        log.info("Loaded convolutional layer (shape %s) from file %s" %
                 (str(convW.shape), args.load_conv))

    convLinear = LinearLayer(flattenInput,
                             wordWindowSize * wordEmbedding.getEmbeddingSize(),
                             convSize,
                             W=convW,
                             b=convb,
                             weightInitialization=weightInit)

    # Max pooling layer.
    maxPooling = MaxPoolingLayer(convLinear)

    # Hidden layer.
    if not args.train and args.load_hiddenLayer:
        hiddenNPY = np.load(args.load_hiddenLayer)
        W1 = hiddenNPY[0]
        b1 = hiddenNPY[1]
        log.info("Loaded hidden layer (shape %s) from file %s" %
                 (str(W1.shape), args.load_hiddenLayer))

    hiddenLinear = LinearLayer(maxPooling,
                               convSize,
                               hiddenLayerSize,
                               W=W1,
                               b=b1,
                               weightInitialization=weightInit)

    hiddenAct = ActivationLayer(hiddenLinear, tanh)

    # Entrada linear da camada softmax.
    if not args.train and args.load_softmax:
        hiddenNPY = np.load(args.load_softmax)
        W2 = hiddenNPY[0]
        b2 = hiddenNPY[1]
        log.info("Loaded softmax layer (shape %s) from file %s" %
                 (str(W2.shape), args.load_softmax))

    sotmaxLinearInput = LinearLayer(hiddenAct,
                                    hiddenLayerSize,
                                    labelLexicon.getLen(),
                                    W=W2,
                                    b=b2,
                                    weightInitialization=ZeroWeightGenerator())

    # Softmax.
    # softmaxAct = ReshapeLayer(ActivationLayer(sotmaxLinearInput, softmax), (1, -1))
    softmaxAct = ActivationLayer(sotmaxLinearInput, softmax)

    # Prediction layer (argmax).
    prediction = ArgmaxPrediction(None).predict(softmaxAct.getOutput())

    # Loss function.
    if args.label_weights is not None and len(
            args.label_weights) != labelLexicon.getLen():
        log.error(
            "Number of label weights (%d) is different from number of labels (%d)!"
            % (len(args.label_weights), labelLexicon.getLen()))
    nlloe = NegativeLogLikelihoodOneExample(weights=args.label_weights)
    loss = nlloe.calculateError(softmaxAct.getOutput()[0], prediction,
                                outLabel)

    # Input generators: word window.
    inputGenerators = [
        WordWindowGenerator(wordWindowSize, wordLexicon, filters, startSymbol,
                            endSymbol)
    ]

    # Output generator: generate one label per offer.
    outputGenerators = [TextLabelGenerator(labelLexicon)]
    # outputGenerators = [lambda label: labelLexicon.put(label)]

    evalPerIteration = None

    if normalizeMethod == "minmax":
        log.info("Normalization: minmax")
        wordEmbedding.minMaxNormalization()
    elif normalizeMethod == "mean":
        log.info("Normalization: mean normalization")
        wordEmbedding.meanNormalization()
    elif normalizeMethod == "zscore":
        log.info("Normalization: zscore normalization")
        wordEmbedding.zscoreNormalization()
    elif normalizeMethod:
        log.error("Normalization: unknown value %s" % normalizeMethod)
        sys.exit(1)

    # Decaimento da taxa de aprendizado.
    decay = None
    if args.decay == "none":
        decay = 0.0
    elif args.decay == "linear":
        decay = 1.0
    else:
        log.error("Unknown decay parameter %s." % args.decay)
        exit(1)

    # Algoritmo de aprendizado.
    if args.alg == "adagrad":
        log.info("Using Adagrad")
        opt = Adagrad(lr=lr, decay=decay)
    elif args.alg == "sgd":
        log.info("Using SGD")
        opt = SGD(lr=lr, decay=decay)
    else:
        log.error("Unknown algorithm: %s." % args.alg)
        sys.exit(1)

    # TODO: debug
    # opt.lr.tag.test_value = 0.05

    # Printing embedding information.
    dictionarySize = wordEmbedding.getNumberOfVectors()
    embeddingSize = wordEmbedding.getEmbeddingSize()
    log.info("Dictionary size: %d" % dictionarySize)
    log.info("Embedding size: %d" % embeddingSize)
    log.info("Number of categories: %d" % labelLexicon.getLen())

    # TODO: debug
    # mode = theano.compile.debugmode.DebugMode(optimizer=None)
    mode = None
    model = BasicModel(x=inputTensors,
                       y=[outLabel],
                       allLayers=softmaxAct.getLayerSet(),
                       optimizer=opt,
                       prediction=prediction,
                       loss=loss,
                       mode=mode)

    wordWindow = WordWindowGenerator(wordWindowSize, wordLexicon, filters,
                                     startSymbol, endSymbol)

    # GETS HIDDEN LAYER:
    # graph = EmbeddingGraph([inWords], [hiddenAct.getOutput()], wordWindow)

    # GRAPH FOR PREDICTION LAYER
    graph = EmbeddingGraph(inputTensors, prediction, wordWindow, mode)

    lblTxt = ["Sim", "Nao"]

    tweets = []
    with open(sys.argv[2]) as inputFile:
        content = inputFile.readlines()
    for line in content:
        tweets.append(line.decode('utf-8').encode('utf-8'))
    #print tweets
    # graph.getResultsFor(t) retorna a predição para dado Tweet t
    try:
        output_file = open("Output.txt", "w")
    except:
        print "Falha em criar o arquivo de saida\n"
    try:
        for t in tweets:
            output_file.write(
                t.replace('\n', '').replace('\t', '') + "\t " +
                lblTxt[graph.getResultsFor(t)] + "\n")
        print "Resultados gerados com sucesso!\n"
    except:
        print "Erro na geração de resultados\n"
コード例 #7
0
        log.info("Reading test examples")
        testReader = DocReader(args.test)
        testIterator = SyncBatchIterator(testReader,
                                         inputGenerators,
                                         outputGenerators,
                                         -1,
                                         shuffle=False)

        log.info("Testing")
        model.test(testIterator)


if __name__ == '__main__':
    # Load logging configuration.
    full_path = os.path.realpath(__file__)
    path, filename = os.path.split(full_path)
    logging.config.fileConfig(os.path.join(path, 'logging.conf'), defaults={})

    log = logging.getLogger(__name__)

    if len(sys.argv) != 2:
        log.error('Syntax error! Expected JSON arguments file.')
        sys.exit(1)

    # Load arguments from JSON input file.
    argsDict = JsonArgParser(PARAMETERS).parse(sys.argv[1])
    args = dict2obj(argsDict, 'DocClassificationArguments')
    logging.getLogger(__name__).info(argsDict)

    main(args)