import config from util import data_loader from util import losses from util import keras_util from util.keras_util import KerasModelConfig model_config = KerasModelConfig( k_fold_file="1.txt", model_path=os.path.abspath(__file__), image_resolution=400, data_type=[config.DATA_TYPE_ORIGINAL], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], label_color_augment=[0, 1, 3, 5, 6, 7, 9, 10, 11, 12], train_batch_size=[16, 16, 16], label_up_sampling=[10, 0, 0, 10, 0, 0, 10, 0, 0, 0, 0, 0, 10], data_visualization=True, initial_epoch=4, downsampling=0.5, val_batch_size=128, predict_batch_size=128, epoch=[1, 3, 5], lr=[0.001, 0.0001, 0.00001], freeze_layers=[-1, 0.6, 5], tta_flip=True, input_norm=False) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights="imagenet"): base_model = keras.applications.ResNet50( include_top=False, weights=weights,
from keras.layers import Dense, BatchNormalization, Activation import config from util import data_loader from util import keras_util from util import losses from util.keras_util import KerasModelConfig model_config = KerasModelConfig(k_fold_file="1.txt", model_path=os.path.abspath(__file__), image_resolution=224, data_type=[config.DATA_TYPE_ORIGINAL], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], train_batch_size=[32, 32], data_visualization=True, val_batch_size=256, predict_batch_size=256, epoch=[2, 10], lr=[0.0001, 0.00001], clr=True, freeze_layers=[0.1, 0.1], tta_flip=True, input_norm=False) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights="imagenet"): base_model = keras.applications.DenseNet169(include_top=False, weights=weights, input_shape=model_config.image_shape, pooling="avg") x = base_model.output x = Dense(256, use_bias=False)(x)
import keras from keras.layers import Dense, BatchNormalization, Activation import config from util import data_loader from util import keras_util from util.keras_util import KerasModelConfig model_config = KerasModelConfig( k_fold_file="1.txt", model_path=os.path.abspath(__file__), image_resolution=224, data_type=[config.DATA_TYPE_ORIGINAL], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], label_up_sampling=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0], train_batch_size=[32, 32, 32], val_batch_size=256, predict_batch_size=256, epoch=[1, 4, 10], lr=[0.001, 0.0001, 0.00001], data_visualization=True, freeze_layers=[-1, 0.6, 5], tta_flip=True, tta_crop=True) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights="imagenet"): base_model = keras.applications.DenseNet169( include_top=False, weights=weights, input_shape=model_config.image_shape, pooling="avg")
import keras from keras.layers import Dense, BatchNormalization, Activation import config from util import data_loader from util import keras_util from util.keras_util import KerasModelConfig model_config = KerasModelConfig( k_fold_file="1.txt", model_path=os.path.abspath(__file__), image_resolution=224, data_type=[config.DATA_TYPE_ORIGINAL], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], label_color_augment=[0, 1, 3, 5, 6, 7, 9, 10, 11, 12], train_batch_size=[16, 16, 16], initial_epoch=1, val_batch_size=256, predict_batch_size=256, epoch=[1, 4, 10], lr=[0.0005, 0.00005, 0.000005], data_visualization=True, freeze_layers=[-1, 0.6, 5]) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights="imagenet"): base_model = keras.applications.DenseNet201( include_top=False, weights=weights, input_shape=model_config.image_shape, pooling="avg")
import time import keras from keras.layers import Dense, BatchNormalization, Activation import config from util import data_loader from util import keras_util from util.keras_util import KerasModelConfig model_config = KerasModelConfig(k_fold_file="1.txt", model_path=os.path.abspath(__file__), image_resolution=224, data_type=[config.DATA_TYPE_ORIGINAL], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], train_batch_size=[16, 16, 16], val_batch_size=256, predict_batch_size=256, epoch=[1, 4, 12], lr=[0.001, 0.0001, 0.00001], freeze_layers=[-1, 0, 0]) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights="imagenet"): base_model = keras.applications.DenseNet201(include_top=False, weights=weights, input_shape=model_config.image_shape, pooling="avg") x = base_model.output x = Dense(256, use_bias=False)(x) x = BatchNormalization()(x) x = Activation("relu")(x)
import keras from keras.layers import Dense, BatchNormalization, Activation import config from util import data_loader from util import keras_util from util.keras_util import KerasModelConfig model_config = KerasModelConfig(k_fold_file="1.txt", model_path=os.path.abspath(__file__), image_resolution=224, data_type=[config.DATA_TYPE_ORIGINAL], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], label_up_sampling=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50], downsampling=0.5, train_batch_size=[16, 16, 16], data_visualization=True, val_batch_size=256, predict_batch_size=256, epoch=[1, 4, 8], lr=[0.0005, 0.00005, 0.000005], freeze_layers=[-1, 0.9, 0.7]) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights="imagenet"): base_model = keras.applications.DenseNet201(include_top=False, weights=weights, input_shape=model_config.image_shape, pooling="avg") x = base_model.output x = Dense(256, use_bias=False)(x) x = BatchNormalization()(x)
from keras.layers import Dense, BatchNormalization, Activation import config from util import data_loader from util import keras_util from util.keras_util import KerasModelConfig model_config = KerasModelConfig( k_fold_file="1.txt", model_path=os.path.abspath(__file__), image_resolution=224, data_type=[config.DATA_TYPE_ORIGINAL], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], label_color_augment=[0, 1, 3, 5, 6, 7, 9, 10, 11, 12], label_up_sampling=[0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0], data_visualization=True, downsampling=0.8, train_batch_size=[32, 32, 32], val_batch_size=256, predict_batch_size=256, epoch=[2, 4, 10], lr=[0.0005, 0.00005, 0.000005], freeze_layers=[-1, 0.6, 5], input_norm=False) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights="imagenet"): base_model = keras.applications.DenseNet169( include_top=False, weights=weights, input_shape=model_config.image_shape,
import keras from keras.layers import Dense, BatchNormalization, Activation import config from util import data_loader from util import keras_util from util import metrics from util.keras_util import KerasModelConfig model_config = KerasModelConfig( k_fold_file="1.txt", image_resolution=224, model_path=os.path.abspath(__file__), data_type=[config.DATA_TYPE_SEGMENTED], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], train_batch_size=[32, 32, 32], val_batch_size=64, predict_batch_size=128, epoch=[1, 6, 12], lr=[0.001, 0.0001, 0.00001], freeze_layers=[-1, 0.5, 0]) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights="imagenet"): base_model = keras.applications.InceptionV3( weights=weights, include_top=False, input_shape=model_config.image_shape, pooling="max") x = base_model.output x = Dense(256, activation="relu", use_bias=False)(x)
from keras.layers import Dense import config from util import data_loader from util import keras_util from util import metrics from util.keras_util import KerasModelConfig model_config = KerasModelConfig( k_fold_file="1.txt", model_path=os.path.abspath(__file__), image_resolution=360, data_type=[config.DATA_TYPE_ORIGINAL], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], label_color_augment=[0, 1, 3, 5, 6, 7, 9, 10, 11, 12], train_batch_size=[16, 16], val_batch_size=128, predict_batch_size=128, epoch=[2, 6], lr=[0.0001, 0.00001], freeze_layers=[0, 0], tta_flip=True, data_visualization=True) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights="imagenet"): base_model = keras.applications.Xception( include_top=False, weights=weights, input_shape=model_config.image_shape, pooling="avg")
import config from util import data_loader from util import keras_util from util import metrics from util.keras_util import KerasModelConfig model_config = KerasModelConfig( k_fold_file="1.txt", model_path=os.path.abspath(__file__), image_resolution=324, data_type=[config.DATA_TYPE_ORIGINAL], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], label_color_augment=[0, 1, 3, 5, 6, 7, 9, 10, 11, 12], train_batch_size=[16, 16], label_up_sampling=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20], data_visualization=True, downsampling=0.8, val_batch_size=256, predict_batch_size=256, epoch=[1, 6], lr=[0.0001, 0.00001], freeze_layers=[5, 5], tta_crop=True) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights="imagenet"): base_model = keras.applications.InceptionV3( weights=weights, include_top=False, input_shape=model_config.image_shape,
import keras from keras.layers import Dense, BatchNormalization, Activation, Flatten, GlobalAveragePooling2D import config from util import data_loader from util import keras_util from util.keras_util import KerasModelConfig from util import path model_config = KerasModelConfig(k_fold_file="1.txt", model_path=os.path.abspath(__file__), image_resolution=224, data_type=[config.DATA_TYPE_ORIGINAL], label_position=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], label_color_augment=[0, 1, 3, 5, 6, 7, 9, 10, 11, 12], label_up_sampling=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50], downsampling=0.8, train_batch_size=[16, 16, 16], val_batch_size=128, predict_batch_size=128, epoch=[1, 4, 8], lr=[0.001, 0.0001, 0.00001], freeze_layers=[-1, 0.6, 5]) def get_model(freeze_layers=-1, lr=0.01, output_dim=1, weights=os.path.join(path.root_path, 'resnet152_weights_tf.h5')): base_model = resnet152.resnet152_model(resolution=model_config.image_resolution, weights_path=weights) base_model.layers.pop() base_model.layers.pop() x = GlobalAveragePooling2D()(base_model.layers[-1].output) x = Dense(256, use_bias=False)(x) x = BatchNormalization()(x)