コード例 #1
0
    def __init__(self):
        label_map_file = self.load_labelemap()
        label_map = label_map_util.load_labelmap(label_map_file)
        log.debug(label_map)
        categories = label_map_util.convert_label_map_to_categories(
            label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
        self.__category_index = label_map_util.create_category_index(
            categories)
        self.__detection_graph = tf.Graph()
        #self.__feature_extractor = ExtractFeature(use_gpu=True)
        self.__color_extractor = ExtractColor(use_gpu=True)
        model_file = self.load_model()
        with self.__detection_graph.as_default():
            od_graph_def = tf.GraphDef()
            with tf.gfile.GFile(model_file, 'rb') as fid:
                serialized_graph = fid.read()
                od_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(od_graph_def, name='')

            with tf.device(GPU):
                config = tf.ConfigProto()
                config.gpu_options.allow_growth = True
                self.__sess = tf.Session(config=config,
                                         graph=self.__detection_graph)

        log.info('_init_ done')
コード例 #2
0
ファイル: object_detect.py プロジェクト: zbxzc35/bl-detect
  def __init__(self):
    label_map = label_map_util.load_labelmap(OD_LABELS)
    log.debug(label_map)
    categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
                                                                use_display_name=True)
    self.__category_index = label_map_util.create_category_index(categories)
    self.__detection_graph = tf.Graph()
    with self.__detection_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(OD_MODEL, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

      self.__sess = tf.Session(graph=self.__detection_graph)

    self.image_feature = ExtractFeature()
    log.info('_init_ done')
コード例 #3
0
    def __init__(self):
        # Load categories
        curr_dir = os.path.dirname(os.path.realpath(__file__))
        labels_file = curr_dir + '/label_map.pbtxt'
        num_classes = 14
        label_map = label_map_util.load_labelmap(labels_file)
        categories = label_map_util.convert_label_map_to_categories(
            label_map, max_num_classes=num_classes, use_display_name=True)
        self.category_index = label_map_util.create_category_index(categories)

        # Load inference graph
        frozen_graph_file = curr_dir + '/inference_graph/frozen_inference_graph.pb'
        self.detection_graph = tf.Graph()
        with self.detection_graph.as_default():
            od_graph_def = tf.GraphDef()

            with tf.gfile.GFile(frozen_graph_file, 'rb') as fid:
                serialized_graph = fid.read()
                od_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(od_graph_def, name='')

            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True

            self.sess = tf.Session(graph=self.detection_graph, config=config)

        # Input and output tensors
        self.image_tensor = self.detection_graph.get_tensor_by_name(
            'image_tensor:0')
        self.detection_boxes = self.detection_graph.get_tensor_by_name(
            'detection_boxes:0')
        self.detection_scores = self.detection_graph.get_tensor_by_name(
            'detection_scores:0')
        self.detection_classes = self.detection_graph.get_tensor_by_name(
            'detection_classes:0')
        self.num_detections = self.detection_graph.get_tensor_by_name(
            'num_detections:0')

        self.debug = False
コード例 #4
0
    def __init__(self):
        # self.download_model()
        # Loading label map
        self.__api_instance = stylelens_index.ImageApi()
        self.__search = stylelens_search.SearchApi()
        label_map = label_map_util.load_labelmap(OD_LABELS)
        print(label_map)
        categories = label_map_util.convert_label_map_to_categories(
            label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
        self.__category_index = label_map_util.create_category_index(
            categories)
        self.__detection_graph = tf.Graph()
        with self.__detection_graph.as_default():
            od_graph_def = tf.GraphDef()
            with tf.gfile.GFile(OD_MODEL, 'rb') as fid:
                serialized_graph = fid.read()
                od_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(od_graph_def, name='')

            self.__sess = tf.Session(graph=self.__detection_graph)

        self.image_feature = feature_extract.ExtractFeature()
        print('_init_ done')
コード例 #5
0
CURRENCY_UNIT = 'currency_unit'
PRODUCT_URL = 'product_url'
PRODUCT_NO = 'product_no'
MAIN = 'main'
NATION = 'nation'

REDIS_IMAGE_CROP_QUEUE = 'bl:image:crop:queue'

STR_BUCKET = "bucket"
STR_STORAGE = "storage"
STR_CLASS_CODE = "class_code"
STR_NAME = "name"
STR_FORMAT = "format"

# Loading label map
label_map = label_map_util.load_labelmap(OD_LABELS)
categories = label_map_util.convert_label_map_to_categories(
    label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

api_instance = stylelens_index.ImageApi()

REDIS_SERVER = os.environ['REDIS_SERVER']

rconn = redis.StrictRedis(REDIS_SERVER)

logging.basicConfig(filename='./log/main.log', level=logging.DEBUG)
heart_bit = True


def job():
コード例 #6
0
    file_name = os.path.basename(file.name)
    if 'frozen_inference_graph.pb' in file_name:
        tar_file.extract(file, os.getcwd())

# ## Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

# ## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`.  Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
    label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)


# ## Helper code
def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape(
        (im_height, im_width, 3)).astype(np.uint8)


# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)