コード例 #1
0
def example():
    """simple test and performance measure
    """

    num_user = 944
    num_item = 1683

    num_hidden = 200
    iterations = 400

    corruption = 0.2

    train = build_ml_100k_train_binary3()
    test = build_ml_100k_test_binary3()

    train_matrix = build_user_item_matrix(num_user, num_item, train)
    test_matrix = build_user_item_matrix(num_user, num_item, test)

    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    num_user = num_user - 1
    num_item = num_item - 1

    mf_model = CDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, num_hidden)

    mf_model.estimate(iterations, corruption)

    train = build_ml_100k_train_binary1()
    test = build_ml_100k_test_binary1()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = CDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, num_hidden)

    mf_model.estimate(iterations, corruption)

    train = build_ml_100k_train_binary2()
    test = build_ml_100k_test_binary2()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = CDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, num_hidden)

    mf_model.estimate(iterations, corruption)

    train = build_ml_100k_train_binary4()
    test = build_ml_100k_test_binary4()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = CDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, num_hidden)

    mf_model.estimate(iterations, corruption)

    train = build_ml_100k_train_binary5()
    test = build_ml_100k_test_binary5()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = CDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, num_hidden)

    mf_model.estimate(iterations, corruption)

    return mf_model
コード例 #2
0
def example():
    """simple test and performance measure
    """

    num_user = 6041
    num_item = 3953

    num_hidden = 500
    iterations = 501

    train = build_ml_1m_train_binary2()
    test = build_ml_1m_test_binary2()

    train_matrix = build_user_item_matrix(num_user, num_item, train)
    test_matrix = build_user_item_matrix(num_user, num_item, test)

    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    num_user = num_user - 1
    num_item = num_item - 1

    mf_model = CDAE_ML_1m(train_matrix.shape[0], num_item, train_matrix,
                          test_matrix, num_hidden)

    mf_model.estimate(iterations, 0.2)

    train = build_ml_1m_train_binary4()
    test = build_ml_1m_test_binary4()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = CDAE_ML_1m(train_matrix.shape[0], num_item, train_matrix,
                          test_matrix, num_hidden)

    mf_model.estimate(iterations, 0.2)

    train = build_ml_1m_train_binary5()
    test = build_ml_1m_test_binary5()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = CDAE_ML_1m(train_matrix.shape[0], num_item, train_matrix,
                          test_matrix, num_hidden)

    mf_model.estimate(iterations, 0.2)

    train = build_ml_1m_train_binary3()
    test = build_ml_1m_test_binary3()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = CDAE_ML_1m(train_matrix.shape[0], num_item, train_matrix,
                          test_matrix, num_hidden)

    mf_model.estimate(iterations, 0.2)

    train = build_ml_1m_train_binary1()
    test = build_ml_1m_test_binary1()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = CDAE_ML_1m(train_matrix.shape[0], num_item, train_matrix,
                          test_matrix, num_hidden)

    mf_model.estimate(iterations, 0.2)

    return mf_model
コード例 #3
0
def example():
    """simple test and performance measure
    """

    num_user = 943
    num_item = 1682

    num_hidden = 200
    iterations = 400
    pre_iterations = 400
    alpha = 0.4
    imputation_ratio = 0.02

    train = build_ml_100k_train_binary3()
    test = build_ml_100k_test_binary3()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = IDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, train_matrix, num_hidden)

    output_matrix = mf_model.preTrain(pre_iterations, imputation_ratio)

    mf_model = IDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, output_matrix, num_hidden)

    mf_model.estimate(iterations, alpha)

    train = build_ml_100k_train_binary1()
    test = build_ml_100k_test_binary1()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = IDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, train_matrix, num_hidden)

    output_matrix = mf_model.preTrain(pre_iterations, imputation_ratio)

    mf_model = IDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, output_matrix, num_hidden)

    mf_model.estimate(iterations, alpha)

    train = build_ml_100k_train_binary2()
    test = build_ml_100k_test_binary2()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = IDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, train_matrix, num_hidden)

    output_matrix = mf_model.preTrain(pre_iterations, imputation_ratio)

    mf_model = IDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, output_matrix, num_hidden)

    mf_model.estimate(iterations, alpha)

    train = build_ml_100k_train_binary4()
    test = build_ml_100k_test_binary4()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = IDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, train_matrix, num_hidden)

    output_matrix = mf_model.preTrain(pre_iterations, imputation_ratio)

    mf_model = IDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, output_matrix, num_hidden)

    mf_model.estimate(iterations, alpha)

    train = build_ml_100k_train_binary5()
    test = build_ml_100k_test_binary5()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = IDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, train_matrix, num_hidden)

    output_matrix = mf_model.preTrain(pre_iterations, imputation_ratio)

    mf_model = IDAE_ML_100k(train_matrix.shape[0], num_item, train_matrix,
                            test_matrix, output_matrix, num_hidden)

    mf_model.estimate(iterations, alpha)

    return mf_model
コード例 #4
0
def example():
    """simple test and performance measure
    """

    num_user = 944
    num_item = 1683

    num_hidden = 200
    iterations = 400
    pre_iterations = 400

    train = build_ml_100k_train_binary3()
    test = build_ml_100k_test_binary3()

    train_matrix = build_user_item_matrix(num_user, num_item, train)
    test_matrix = build_user_item_matrix(num_user, num_item, test)

    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    num_user = num_user - 1
    num_item = num_item - 1

    mf_model = DAE_with_imputation_ML_100k(train_matrix.shape[0], num_item,
                                           train_matrix, test_matrix,
                                           train_matrix, num_hidden)

    output_matrix = mf_model.preTrain(pre_iterations)

    mf_model = DAE_with_imputation_ML_100k(train_matrix.shape[0], num_item,
                                           train_matrix, test_matrix,
                                           output_matrix, num_hidden)

    mf_model.estimate(iterations)

    train = build_ml_100k_train_binary1()
    test = build_ml_100k_test_binary1()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = DAE_with_imputation_ML_100k(train_matrix.shape[0], num_item,
                                           train_matrix, test_matrix,
                                           train_matrix, num_hidden)

    output_matrix = mf_model.preTrain(pre_iterations)

    mf_model = DAE_with_imputation_ML_100k(train_matrix.shape[0], num_item,
                                           train_matrix, test_matrix,
                                           output_matrix, num_hidden)

    mf_model.estimate(iterations)

    train = build_ml_100k_train_binary2()
    test = build_ml_100k_test_binary2()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = DAE_with_imputation_ML_100k(train_matrix.shape[0], num_item,
                                           train_matrix, test_matrix,
                                           train_matrix, num_hidden)

    output_matrix = mf_model.preTrain(pre_iterations)

    mf_model = DAE_with_imputation_ML_100k(train_matrix.shape[0], num_item,
                                           train_matrix, test_matrix,
                                           output_matrix, num_hidden)

    mf_model.estimate(iterations)

    train = build_ml_100k_train_binary4()
    test = build_ml_100k_test_binary4()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = DAE_with_imputation_ML_100k(train_matrix.shape[0], num_item,
                                           train_matrix, test_matrix,
                                           train_matrix, num_hidden)

    output_matrix = mf_model.preTrain(pre_iterations)

    mf_model = DAE_with_imputation_ML_100k(train_matrix.shape[0], num_item,
                                           train_matrix, test_matrix,
                                           output_matrix, num_hidden)

    mf_model.estimate(iterations)

    train = build_ml_100k_train_binary5()
    test = build_ml_100k_test_binary5()

    train_matrix = build_user_item_matrix(num_user + 1, num_item + 1, train)
    test_matrix = build_user_item_matrix(num_user + 1, num_item + 1, test)
    train_matrix = train_matrix.todense()
    test_matrix = test_matrix.todense()

    train_matrix = train_matrix[1:, 1:]
    test_matrix = test_matrix[1:, 1:]

    mf_model = DAE_with_imputation_ML_100k(train_matrix.shape[0], num_item,
                                           train_matrix, test_matrix,
                                           train_matrix, num_hidden)

    output_matrix = mf_model.preTrain(pre_iterations)

    mf_model = DAE_with_imputation_ML_100k(train_matrix.shape[0], num_item,
                                           train_matrix, test_matrix,
                                           output_matrix, num_hidden)

    mf_model.estimate(iterations)

    return mf_model