コード例 #1
0
def cloud_ident_temp_composite(path_pattern):
    dateiListe = glob.glob(path_pattern); dateiListe.sort()
    print "File count: " + str(len(dateiListe))
    # Get domain dimensions
    xsize = lats.shape[0]
    ysize = lats.shape[1]

    # create empty 2d-array with exactly the same dimensions as the GeoTiffs to store minimum composite values
    Composite_039 = empty((xsize,ysize))
    Composite_108 = empty((xsize,ysize))
    # fill the empty array with "infinity" values
    Composite_039.fill(0)
    Composite_108.fill(0)
    
    for datei in dateiListe:
        
        start = time.time()
        print "Processing file " + datei + "... "
        scene, time_slot, error = loadCalibratedDataForDomain(datei,tempDir,xRITDecompressToolPath,lats,lons,correct=False,hrv_slices = [], channels = ['IR_039','IR_108'])
        
        Composite_039 = maximum(scene["IR_039"].data,Composite_039)
        Composite_108 = maximum(scene["IR_108"].data,Composite_108)
        
        end = time.time()
        print "\r done (Time elapsed: " + "{:3.2f}".format(end - start) + ')'
        
    writeToGeoTiff(Composite_039, "/home/sebastian/Desktop/composite_039_30tage.tif", xsize, ysize)
    writeToGeoTiff(Composite_108, "/home/sebastian/Desktop/composite_108_30tage.tif", xsize, ysize)
    return
コード例 #2
0
def reprojWorldClimDEM():
    dem = zeros((3712, 3712))
    dem.fill(-9999)

    demWorldclim = gdal.Open("/home/sebastian/Documents/reproj.tif",
                             GA_ReadOnly)
    demWorldclim_band = demWorldclim.GetRasterBand(1)
    demWorldclim_data = demWorldclim_band.ReadAsArray(0, 0,
                                                      demWorldclim.RasterXSize,
                                                      demWorldclim.RasterYSize)

    proj = demWorldclim.GetProjection()
    xsize = demWorldclim.RasterXSize
    ysize = demWorldclim.RasterYSize

    print proj
    print xsize
    print ysize

    for i in range(3477):
        print i
        for j in range(3622):
            dem[i + 52, j + 46] = demWorldclim_data[i, j]

    PathToRawMSGData = "/home/sebastian/Documents/MSG_tests/MSG_testdaten/2013/08/08/MSG3-SEVI-MSG15-0100-NA-20130808125744.305000000Z-1081780-1.tar"
    scene, time_slot, error = loadCalibratedDataForDomain(
        PathToRawMSGData,
        tempDir,
        xRITDecompressToolPath,
        correct=False,
        areaBorders=(-5570248.4773392612, -5567248.074173444,
                     5567248.074173444, 5570248.4773392612),
        slices=[1, 2, 3, 4, 5, 6, 7, 8],
        channels=['IR_108'])

    # Save result as GeoTiff:
    driver = gdal.GetDriverByName('GTiff')
    dsO = driver.Create("/home/sebastian/Documents/dem_final.tif", 3712, 3712,
                        1, gdal.GDT_Int16)
    dsO.SetProjection(proj)
    dsO.GetRasterBand(1).WriteArray(int16(dem))
    dsO.FlushCache()  # Write to disk.

    write_sceneJO(scene, dem, "/home/sebastian/Documents/test/")

    #plot2dArray(dem,title="dem",show=True, outputPath="/home/sebastian/Documents/dem_tests.png")
    return
コード例 #3
0
def generatePlotsAndHistogramFromHRITFiles(paths, outputFolder):
    files = glob.glob(paths)
    files.sort()
    if len(files) == 0:
        print "No Files DUUDE!"
        return
    for file in files:
        print "Processing file: " + file
        scene, time_slot, error = loadCalibratedDataForDomain(
            file,
            tempDir,
            xRITDecompressToolPath,
            None,
            None,
            area_name="LCRSProducts",
            correct=False)
        generatePlotsAndHistogramFromHRITScene(scene, time_slot)
    return
コード例 #4
0
Created on Jan 6, 2016

@author: sebastian
'''
import datetime
import glob
import os

from plot.plot_advanced import plotSceneToNightOverviewPNG
from util.load_raw_data import loadCalibratedDataForDomain


xRITDecompressToolPath =    "../misc/HRIT/2.06/xRITDecompress/xRITDecompress"   # Path to XRIT-Decompress-Tool
tempDir =                   "/tmp/cloudmask/"
offset_left =               -5570248.4773392612
offset_down =               -5567248.074173444
domainBuffer =              50
left = 1589-domainBuffer; down = 664+domainBuffer; right = 2356+domainBuffer; up = 154-domainBuffer     # LCRS-Domain with buffer
pixelsize   = 3000.403165817
areaBorders = (offset_left+left*pixelsize, offset_down+(3712-down)*pixelsize, offset_left+right*pixelsize, offset_down+(3712-up)*pixelsize)


files = glob.glob('/media/sebastian/8203f938-ff46-4cba-a16f-ee346037cf0f/2008/06/*/*.tar'); files.sort()

for datei in files:
    print "Processing file " + datei
    scene, time_slot, error = loadCalibratedDataForDomain(datei,tempDir,xRITDecompressToolPath,correct=True,areaBorders=areaBorders)
    outputpath = "/home/sebastian/Documents/test/"+datetime.datetime.strftime(time_slot,"%Y/%m/%d/")
    if not os.path.exists(outputpath):
        os.makedirs(outputpath)
    plotSceneToNightOverviewPNG(scene,outputpath+datetime.datetime.strftime(time_slot,"%Y%m%d_%H%M") + ".png")
コード例 #5
0
def convertHRITToGeoTiffs(hritPath,outputFolder,channels=[]):
    scene, time_slot, error = loadCalibratedDataForDomain(hritPath,tempDir,xRITDecompressToolPath,lats,lons,correct=False,hrv_slices = [], channels=channels)
    for channel in channels:
        writeToGeoTiff(scene[channel].data,outputFolder+time_slot.strftime("%Y%m%d_%H%M")+"_"+channel+".tif",lats.shape[0], lats.shape[1])
    return
コード例 #6
0
ファイル: cloudmask.py プロジェクト: jdroenner/fls2
def cloudmask(PathToRawMSGData,
              use_gdal_msg_loader=False,
              write_scenes_to_geotiff=False,
              print_progress=False):
    start = time.time()
    error = None

    if print_progress:
        print("Processing file " + PathToRawMSGData + "... ")

    simpleProfiler.start("extract_raw_data_from_tar")
    # Extrahieren des Datums und der Rohdaten aus der übergebenen tar-Datei:
    time_slot = xrit_date_from_within_tar(PathToRawMSGData)
    extractChannelsFromTarFile(PathToRawMSGData,
                               tempDir,
                               slices=xrit_slices,
                               hrv_slices=xrit_hrv_slices,
                               channels=xrit_channels)
    simpleProfiler.stop("extract_raw_data_from_tar")

    block_end = time.time()

    if print_progress:
        print("UNTAR Done (Time elapsed: " +
              "{:3.2f}".format(block_end - start) + ')\n\n')

    ### This block generates the output folders

    time_slot_plot_path = plotDir + time_slot.strftime("%Y%m%d_%H%M/")
    if createPlots:
        if not os.path.exists(time_slot_plot_path):
            os.makedirs(time_slot_plot_path)

    time_slot_scene_path = scene_dir + time_slot.strftime('%Y/%m/%d/')
    if not os.path.exists(time_slot_scene_path):
        os.makedirs(time_slot_scene_path)

    time_slot_ircomposite_path = ircomposite_dir + time_slot.strftime(
        '%Y/%m/%d/')
    if not os.path.exists(time_slot_ircomposite_path):
        os.makedirs(time_slot_ircomposite_path)

    # reading data
    block_start = time.time()
    simpleProfiler.start("read_data")
    ### This block generates either a MSgScene or a Pytroll scene...
    if use_gdal_msg_loader:

        gdal_scene = GdalMsgLoader(tempDir,
                                   prefixes=["."],
                                   simpleProfiler=simpleProfiler).load_scene(
                                       time_slot,
                                       channel_names=xrit_channels,
                                       geos_area=geos_area,
                                       pixel_area=(left - 1, up - 1, right - 1,
                                                   down - 1),
                                       overwrite_dataset_geos_area=True)
        #print("gdal_scene", gdal_scene, gdal_scene.geos_area, gdal_scene.pixel_area)

        calibrated_gdal_scene = msg_calibrator.calibrate_scene(
            gdal_scene,
            rad_bands=[],
            rad_suffix='',
            refl_suffix='',
            temp_suffix='',
            co2_correct_suffix='')
        #print("calibrated_gdal_scene", calibrated_gdal_scene)
        scene = calibrated_gdal_scene
        sza = calibrated_gdal_scene['zenith'].data

    else:
        ### this block loads data using pytroll and generates sza !!!DANGER!!!: delete_all_files_in_folder will REMOVE ALL FILES from the xrit folder. USE THIS ONLY WHEN FILES ARE FROM TAR!!!
        # TODO: unpack in a different folder?

        scene, time_slot, error = loadCalibratedDataForDomain(
            tempDir,
            xRITDecompressToolPath,
            areaBorders=areaBorders,
            correct=True,
            delete_all_files_in_folder=True,
            simpleProfiler=simpleProfiler
        )  #, area_name="met09globeFull", slices=[1,9])
        #print "Scene size: " + str(len(list(scene.loaded_channels())[0].data[0])) + "," + str(len(list(scene.loaded_channels())[0].data))

        if not error == None:
            print error

        if print_progress:
            print("Calculating sza...")
        sza = sza_opencl(scene, time_slot, simpleProfiler=simpleProfiler)

    simpleProfiler.stop("read_data")
    block_end = time.time()

    if print_progress:
        print("LOAD Done (Time elapsed: " +
              "{:3.2f}".format(block_end - block_start) + ')\n\n')

    ### This block writes the loaded channels + additional data to disk
    if write_scenes_to_geotiff:
        if use_gdal_msg_loader:
            print "Writing MSgScene to GeoTiff..."
            msg_scene_writer.write_scene(scene,
                                         channel_list=scene.channels,
                                         gdal_type=gdal.GDT_Float32)

        else:
            print "Writing channels to GeoTiffs..."
            write_scene(scene, time_slot_scene_path)

            print "wrting sza"
        writeDataToGeoTiff(sza,
                           out_dir + time_slot.strftime('%Y%m%d_%H%M') +
                           "_sza" + ".tif",
                           area=list(scene.loaded_channels())[0].area)

    ### This block generates the sza based lightning masks and combines it with the preprocessed elevation mask (aka land/sea mask)

    if print_progress:
        print("Generating light masks...")

    simpleProfiler.start("create_masks")
    light_masks = create_light_unmasks(sza, ["D", "N", "B"])

    if print_progress:
        print("Generating combined masks...")
    combined_masks = create_combined_unmasks(light_masks, elevation_masks)
    simpleProfiler.stop("create_masks")

    ### This block starts cloud pixel detection

    simpleProfiler.start("cloud_pixel_detection")

    if print_progress:
        print("Identifying cloud pixels...")
    # set interpolate_and_replace_outlayers = True to interpolate and replace block values by the 5x5 mean if value > 2*std
    # set algorithm_version=2 for the "old" version" algorithm_version=8 for the new version
    simpleProfiler.start("cloud_pixel_identification")
    all_day__large_night, small_night_pre = cloud_identification(
        scene,
        combined_masks,
        plot_path=time_slot_plot_path,
        mask_names=["DLPC", "DSMC", "NLPC", "NSMC"],
        createPlots=createPlots,
        interpolate_and_replace_outlayers=True,
        algoritm_version=8,
        use_opencl_histogram_generation=True,
        cl_ctx=cl_ctx,
        cl_queue=cl_queue,
        print_progress=print_progress,
        simpleProfiler=simpleProfiler,
        thread_pool=thread_pool)
    small_night = small_night_pre & ~combined_masks["N"]
    simpleProfiler.stop("cloud_pixel_identification")

    if print_progress:
        print("Identifying snow pixels...")
    simpleProfiler.start("snow_identification")
    snow = snow_identification(
        scene, plot_path=time_slot_plot_path,
        createPlots=createPlots)  #mask_names=["DLPC", "DSMC", "NLPC", "NSMC"]
    all_day__large_night__filtered = ~snow & all_day__large_night
    small_night__filtered = ~snow & small_night
    simpleProfiler.stop("snow_identification")

    if print_progress:
        print("Calculating small droplet proxy...")
    simpleProfiler.start("small_droplet_proxy")
    small_day__filtered = small_droplet_proxy(scene,
                                              all_day__large_night__filtered,
                                              combined_masks["DLPC"],
                                              combined_masks["D"],
                                              plot_path=time_slot_plot_path,
                                              createPlots=createPlots)
    simpleProfiler.stop("small_droplet_proxy")

    if print_progress:
        print("Merging results...")
    simpleProfiler.start("merging_results")
    small_drops = small_day__filtered | small_night__filtered
    all_drops = all_day__large_night__filtered | small_night__filtered
    large_drops = all_drops & ~small_drops
    simpleProfiler.stop("merging_results")

    if print_progress:
        print("Calculating cloud phase...")
    simpleProfiler.start("cloud_phase")
    liquid = cloud_phase(scene,
                         small_drops,
                         plot_path=time_slot_plot_path,
                         createPlots=createPlots)
    simpleProfiler.stop("cloud_phase")

    if print_progress:
        print("Calculating stratiformity...")
    simpleProfiler.start("stratiformity_opencl")
    stratiform = stratiformity_opencl(scene,
                                      liquid,
                                      plot_path=time_slot_plot_path,
                                      createPlots=createPlots,
                                      cl_ctx=cl_ctx,
                                      cl_queue=cl_queue)
    simpleProfiler.stop("stratiformity_opencl")

    simpleProfiler.stop("cloud_pixel_detection")
    simpleProfiler.start("write_data")

    if print_progress:
        print("Generating output...")
    #plotOverview(scene,time_slot,[all_day__large_night,small_night,snow,small_drops,large_drops,all_drops,liquid,stratiform],plotDir)
    #plotResult(scene,time_slot,stratiform,plotDir)
    simpleProfiler.start("writeDataToGeoTiff")
    writeDataToGeoTiff(stratiform,
                       path=time_slot_scene_path +
                       time_slot.strftime("pyt_%Y%m%d_%H%M_FLS.tif"),
                       buffr=domainBuffer)
    simpleProfiler.stop("writeDataToGeoTiff")

    #plotSceneToNightOverviewPNG(scene,time_slot_ircomposite_path+time_slot.strftime("%Y%m%d_%H%M_ircomposite.png"),buffr=domainBuffer)
    simpleProfiler.stop("write_data")

    if print_progress:
        print("Memory usage:",
              psutil.virtual_memory()[3] / (1024 * 1024), "MB")
    end = time.time()
    if print_progress:
        print("Done (Time elapsed: " + "{:3.2f}".format(end - start) + ')\n\n')
    return