コード例 #1
0
def train(epoch, model, criterion_class, criterion_metric, optimizer, trainloader, use_gpu):
    model.train()
    losses = AverageMeter()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    xent_losses = AverageMeter()
    global_losses = AverageMeter()
    local_losses = AverageMeter()

    end = time.time()
    for batch_idx, (imgs, pids, _) in enumerate(trainloader):
        if use_gpu:
            imgs, pids = imgs.cuda(), pids.cuda()

        # measure data loading time
        data_time.update(time.time() - end)
        outputs, features, local_features = model(imgs)
        if args.htri_only:
            if isinstance(features, tuple):
                global_loss, local_loss = DeepSupervision(criterion_metric, features, pids, local_features)
            else:
                global_loss, local_loss = criterion_metric(features, pids, local_features)
        else:
            if isinstance(outputs, tuple):
                xent_loss = DeepSupervision(criterion_class, outputs, pids)
            else:
                xent_loss = criterion_class(outputs, pids)

            if isinstance(features, tuple):
                global_loss, local_loss = DeepSupervision(criterion_metric, features, pids, local_features)
            else:
                global_loss, local_loss = criterion_metric(features, pids, local_features)

        loss = xent_loss + global_loss + local_loss
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        batch_time.update(time.time() - end)
        end = time.time()
        losses.update(loss.item(), pids.size(0))
        xent_losses.update(xent_loss.item(), pids.size(0))
        global_losses.update(global_loss.item(), pids.size(0))
        local_losses.update(local_loss.item(), pids.size(0))

        if (batch_idx+1) % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'CLoss {xent_loss.val:.4f} ({xent_loss.avg:.4f})\t'
                  'GLoss {global_loss.val:.4f} ({global_loss.avg:.4f})\t'
                  'LLoss {local_loss.val:.4f} ({local_loss.avg:.4f})\t'.format(
                   epoch+1, batch_idx+1, len(trainloader), batch_time=batch_time,data_time=data_time,
                   loss=losses,xent_loss=xent_losses, global_loss=global_losses, local_loss = local_losses))
コード例 #2
0
def train(epoch, model, criterion, optimizer, trainloader, use_gpu):
    losses = AverageMeter()
    batch_time = AverageMeter()
    data_time = AverageMeter()

    model.train()

    end = time.time()
    for batch_idx, (imgs, pids, _) in enumerate(trainloader):
        if use_gpu:
            imgs, pids = imgs.cuda(), pids.cuda()

        # measure data loading time
        data_time.update(time.time() - end)

        outputs = model(imgs)
        if isinstance(outputs, tuple):
            loss = DeepSupervision(criterion, outputs, pids)
        else:
            loss = criterion(outputs, pids)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        losses.update(loss.item(), pids.size(0))

        if (batch_idx + 1) % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                      epoch + 1,
                      batch_idx + 1,
                      len(trainloader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses))
コード例 #3
0
ファイル: train_aicity.py プロジェクト: lanhongvp/aiCity_reid
def train(epoch, model, criterion_class, criterion_metric, optimizer, trainloader, use_gpu):
    model.train()
    losses = AverageMeter()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    xent_losses = AverageMeter()
    global_losses = AverageMeter()
    local_losses = AverageMeter()

    end = time.time()
    for batch_idx, (imgs, pids) in enumerate(trainloader):    
#        print('pids',pids.shape)
        if use_gpu:
            imgs, pids = imgs.cuda(), pids.cuda()

        # measure data loading time
        data_time.update(time.time() - end)
#        outputs, features, local_features = model(imgs)
        #embed()
        if args.aligned:
            outputs,features,local_features = model(imgs)
            #embed()
        elif not args.aligned:
            # only use global feature to get the classifier results
            outputs,features= model(imgs)
        # print('outputs',(outputs.shape))
        # htri_only = False(default)
        if args.htri_only:
            if isinstance(features, tuple):
                global_loss, local_loss = DeepSupervision(criterion_metric, features, pids, local_features)
            else:
                # print ('pids:', pids)
                global_loss, local_loss = criterion_metric(features, pids, local_features)
        else:
            if isinstance(outputs, tuple):
                xent_loss = DeepSupervision(criterion_class, outputs, pids)
            else:
                if args.use_pcb:
                    xent_loss = 0.0
                    for logits in outputs:
                        stripe_loss = criterion_class(logits, pids)
                        xent_loss += stripe_loss
                elif not args.use_pcb:
                    xent_loss = criterion_class(outputs, pids)
                if isinstance(features, tuple):
                    global_loss, local_loss = DeepSupervision(criterion_metric, features, pids, local_features)
                else:
                    global_loss, local_loss = criterion_metric(features, pids, local_features)
        
        loss = xent_loss + global_loss + local_loss
        # loss = global_loss
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        batch_time.update(time.time() - end)
        end = time.time()
        losses.update(loss.item(), pids.size(0))
        xent_losses.update(xent_loss.item(), pids.size(0))
        global_losses.update(global_loss.item(), pids.size(0))
        local_losses.update(local_loss.item(), pids.size(0))

        if (batch_idx+1) % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'CLoss {xent_loss.val:.4f} ({xent_loss.avg:.4f})\t'
                  'GLoss {global_loss.val:.4f} ({global_loss.avg:.4f})\t'
                  'LLoss {local_loss.val:.4f} ({local_loss.avg:.4f})\t'.format(
                   epoch+1, batch_idx+1, len(trainloader), batch_time=batch_time,data_time=data_time,
                   loss=losses,xent_loss=xent_losses, global_loss=global_losses, local_loss = local_losses))
コード例 #4
0
def train_PCB(epoch, model, criterion, optimizer, trainloader, use_gpu):
    losses = AverageMeter()
    batch_time = AverageMeter()
    data_time = AverageMeter()

    model.train()

    end = time.time()
    for batch_idx, (imgs, pids, _) in enumerate(trainloader):
        if use_gpu:
            imgs, pids = imgs.cuda(), pids.cuda()

        # measure data loading time
        data_time.update(time.time() - end)

        logits_list, globe_x_logits, L2_logits, Y2, Y3 = model(
            imgs
        )  # return logits_list ,globe_x_logits,L2_logits,z_total_Y2,z_total_Y3
        part = {}
        for i in range(4):
            part[i] = logits_list[i]
        features_globe = globe_x_logits  #全局特征
        L2_f1 = L2_logits[0]
        L2_f2 = L2_logits[1]
        loss_list = {}
        if isinstance(logits_list[1], tuple):
            loss = DeepSupervision(criterion, logits_list[1], pids)
        else:
            for i in range(4):
                loss_list[i] = criterion(part[i], pids)
            loss_globe = criterion(features_globe, pids)
            loss_L21 = criterion(L2_f1, pids)
            loss_L22 = criterion(L2_f2, pids)
            loss_Y2 = criterion(Y2, pids)
            loss_Y3 = criterion(Y3, pids)
            #loss = criterion(outputs, pids)
        if (epoch <= 120):
            loss = loss_list[0] + loss_list[1] + loss_list[2] + loss_list[
                3] + loss_globe + loss_L21 + loss_L22
            optimizer.zero_grad()
            torch.autograd.backward([
                loss_list[0], loss_list[1], loss_list[2], loss_list[3],
                loss_L21, loss_L22, loss_globe
            ], [
                torch.ones(1).cuda(),
                torch.ones(1).cuda(),
                torch.ones(1).cuda(),
                torch.ones(1).cuda(),
                torch.ones(1).cuda(),
                torch.ones(1).cuda(),
                torch.ones(1).cuda()
            ])
            #loss.backward()
            optimizer.step()
        if (epoch > 120):
            loss = loss_Y2 + loss_Y3
            optimizer.zero_grad()
            torch.autograd.backward(
                [loss_Y2, loss_Y3],
                [torch.ones(1).cuda(),
                 torch.ones(1).cuda()])
            optimizer.step()
        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        losses.update(loss.item(), pids.size(0))

        if (batch_idx + 1) % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                      epoch + 1,
                      batch_idx + 1,
                      len(trainloader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses))
コード例 #5
0
def train(epoch, model, model2, criterion_class, criterion_metric,
          criterion_ml, optimizer, optimizer2, trainloader, use_gpu):
    model.train()
    losses = AverageMeter()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    xent_losses = AverageMeter()
    htri_losses = AverageMeter()
    mutual_losses = AverageMeter()

    end = time.time()
    for batch_idx, (imgs, pids, _) in enumerate(trainloader):
        if use_gpu:
            imgs, pids = imgs.cuda(), pids.cuda()

        # measure data loading time
        data_time.update(time.time() - end)
        outputs1, features1 = model(imgs)
        outputs2, features2 = model2(imgs)
        if args.htri_only:
            if isinstance(features1, tuple):
                loss1, dist1 = DeepSupervision(criterion_metric, features1,
                                               pids)
                loss2, dist2 = DeepSupervision(criterion_metric, features2,
                                               pids)
            else:
                loss1, dist1 = criterion_metric(features1, pids)
                loss2, dist2 = criterion_metric(features2, pids)
        else:
            if isinstance(outputs1, tuple):
                xent_loss1 = DeepSupervision(criterion_class, outputs1, pids)
                xent_loss2 = DeepSupervision(criterion_class, outputs2, pids)
            else:
                xent_loss1 = criterion_class(outputs1, pids)
                xent_loss2 = criterion_class(outputs2, pids)

            if isinstance(features1, tuple):
                htri_loss1, dist1 = DeepSupervision(criterion_metric,
                                                    features1, pids)
                htri_loss2, dist2 = DeepSupervision(criterion_metric,
                                                    features2, pids)
            else:
                htri_loss1, dist1 = criterion_metric(features1, pids)
                htri_loss2, dist2 = criterion_metric(features2, pids)

        loss1 = xent_loss1 + htri_loss1
        loss2 = xent_loss2 + htri_loss2
        #ml_loss = criterion_ml(dist1, dist2, pids)
        ml_loss = torch.mean(torch.pow(dist1 - dist2, 2))
        loss = loss1 + loss2 + ml_loss
        optimizer.zero_grad()
        optimizer2.zero_grad()
        loss.backward()
        optimizer.step()
        optimizer2.step()

        batch_time.update(time.time() - end)
        end = time.time()
        losses.update(loss.item(), pids.size(0))
        xent_losses.update(loss1.item(), pids.size(0))
        htri_losses.update(loss2.item(), pids.size(0))
        mutual_losses.update(ml_loss.item(), pids.size(0))

        if (batch_idx + 1) % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Loss1 {xent_loss.val:.4f} ({xent_loss.avg:.4f})\t'
                  'Loss2 {htri_loss.val:.4f} ({htri_loss.avg:.4f})\t'
                  'MLoss {ml_loss.val:.4f} ({ml_loss.avg:.4f})\t'.format(
                      epoch + 1,
                      batch_idx + 1,
                      len(trainloader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses,
                      xent_loss=xent_losses,
                      htri_loss=htri_losses,
                      ml_loss=mutual_losses))
コード例 #6
0
def train(epoch, model, model2, criterion, criterion_ml, optimizer1,
          optimizer2, trainloader, use_gpu):
    losses1 = AverageMeter()
    losses2 = AverageMeter()
    batch_time = AverageMeter()
    data_time = AverageMeter()

    model.train()
    model2.train()

    end = time.time()
    for batch_idx, (imgs, pids, _) in enumerate(trainloader):
        if use_gpu:
            imgs, pids = imgs.cuda(), pids.cuda()

        # measure data loading time
        data_time.update(time.time() - end)
        optimizer2.zero_grad()
        optimizer1.zero_grad()
        outputs1 = model(imgs)
        outputs2 = model2(imgs)
        # print('11111')
        # embed()
        if isinstance(outputs1, tuple):
            loss1 = DeepSupervision(
                criterion, outputs1,
                pids) + 10 * DeepSupervision(criterion_ml, outputs1, outputs2)
        else:
            loss1 = criterion(outputs1,
                              pids) + 10 * criterion_ml(outputs1, outputs2)

        # optimizer1.zero_grad()
        # loss1.backward()
        # optimizer1.step()
        # outputs1 = model(imgs)
        # outputs2 = model2(imgs)
        # print('2222')
        # embed()
        if isinstance(outputs1, tuple):
            loss2 = DeepSupervision(
                criterion, outputs2,
                pids) + 10 * DeepSupervision(criterion_ml, outputs2, outputs1)
        else:
            loss2 = criterion(outputs2,
                              pids) + 10 * criterion_ml(outputs2, outputs1)
        # optimizer2.zero_grad()
        # optimizer1.zero_grad()
        loss1.backward()
        loss2.backward()
        optimizer2.step()
        optimizer1.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        losses1.update(loss1.item(), pids.size(0))
        losses2.update(loss2.item(), pids.size(0))

        if (batch_idx + 1) % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss1 {loss1.val:.4f} ({loss1.avg:.4f})\t'
                  'Loss2 {loss2.val:.4f} ({loss2.avg:.4f})\t'.format(
                      epoch + 1,
                      batch_idx + 1,
                      len(trainloader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss1=losses1,
                      loss2=losses2))