コード例 #1
0
ファイル: load_mnist.py プロジェクト: matthewshang/pyordl
def display(set, i=0):
    image = np.reshape(set[0][i], (28, 28))
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    imgplot = ax.imshow(image, cmap=mpl.cm.Greys)
    imgplot.set_interpolation('nearest')
    plt.show()
コード例 #2
0
def plot_space_leakage(data, num_samples, normalize=False, features=None,
                       dumpfile=None, replot=False):
    """ Scatter plots spatial distance vs euclidean distance in feature space
        for specified features. If features is None all features excluding
        latitude/longitude are included. Since the total number of pairs of
        points is typically large pairs are picked by sampling the data set
        randomly.
    """
    raw_features = list(data)
    if replot:
        res = pickle_load(dumpfile)
        distances = res['distances']
    else:
        distance_features = ['lat', 'lon']
        if normalize:
            # normalize all features to [0, 1]
            for f in list(data):
                if f in distance_features:
                    continue
                data[f] = (data[f] - data[f].min()) / (data[f].max() - data[f].min())

        if features is None:
            non_features = distance_features + ['GHF']
            features = [x for x in list(data) if x not in non_features]

        distances = []
        sys.stderr.write('Sampling %d pairs of points: \n' % num_samples)
        for i in range(num_samples):
            if (i+1) % 100 == 0:
                sys.stderr.write('%d...\n' % (i+1))
            p1, p2 = np.random.randint(0, len(data), 2)
            p1, p2 = data.iloc[p1], data.iloc[p2]
            feature_d = np.linalg.norm(p1[features] - p2[features])
            spatial_d = np.linalg.norm([p1['lat'] - p2['lat'],
                                        p1['lon'] - p2['lon']])
            distances.append((spatial_d, feature_d))
        if dumpfile:
            res = {'distances': distances}
            pickle_dump(dumpfile, res, 'space leakage')

    fig = plt.figure(figsize=(8, 10))
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter([x[0] for x in distances], [x[1] for x in distances],
               edgecolor=None, facecolor='k', alpha=.5)
    ax.set_xlabel('Distance in latitude-longitude')
    ax.set_ylabel('Distance in feature space')
    ax.grid(True)
    ax.set_title('Opacity of selected features with respect to spatial coordinates')

    fig.tight_layout()
コード例 #3
0
def plot_error_by_density(data, roi_densities, radius, ncenters, region='NA-WE',
                          replot=False, dumpfile=None, **gbrt_params):
    """ ncenters random centers are picked and over all given ROI densities.
        Cross-validation errors (normalized RMSE and r2) are averaged over
        ncenters. One standard deviation mark is shown by a shaded region.
    """
    sys.stderr.write('=> Experiment: Error by Density (region: %s, no. centers: %d, no. densities: %d)\n' %
                     (region, ncenters, len(roi_densities)))
    fig = plt.figure(figsize=(11,5))
    ax_rmse, ax_r2 = fig.add_subplot(1, 2, 1), fig.add_subplot(1, 2, 2)

    if replot:
        results = pickle_load(dumpfile)
    else:
        centers = [
            random_prediction_ctr(data, radius, region=region, min_density=max(roi_densities))
            for _ in range(ncenters)
        ]
        shape = (ncenters, len(roi_densities))
        # blank error matrix (keyed by center number and roi density index),
        # used to initialize multiple components of the results dictionary.
        blank = np.zeros(shape)

        results = {
            'ncenters': ncenters,
            'roi_densities': roi_densities,
            'errors': {
                'gbrt': {'rmse': blank.copy(), 'r2': blank.copy()},
                'linear': {'rmse': blank.copy(), 'r2': blank.copy()},
                'constant': {'rmse': blank.copy(), 'r2': blank.copy()},
            },
        }
        for idx_density, roi_density in enumerate(roi_densities):
            for idx_ctr, center in enumerate(centers):
                sys.stderr.write('# density = %.2f, center %d/%d ' % (roi_density, idx_ctr + 1, ncenters))
                comp = compare_models(data, roi_density, radius, center, **gbrt_params)
                for k in results['errors'].keys():
                    # k is one of gbrt, linear, or constant
                    results['errors'][k]['r2'][idx_ctr][idx_density] = comp[k][0]
                    results['errors'][k]['rmse'][idx_ctr][idx_density] = comp[k][1]
        if dumpfile:
            pickle_dump(dumpfile, results, comment='GBRT performance results')

    errors = results['errors']
    roi_densities = results['roi_densities']
    ncenters = results['ncenters']
    num_sigma = 1

    # Plot GBRT results
    kw = {'alpha': .9, 'lw': 1, 'marker': 'o', 'markersize': 4, 'color': 'b'}
    mean_rmse = errors['gbrt']['rmse'].mean(axis=0)
    sd_rmse = np.sqrt(errors['gbrt']['rmse'].var(axis=0))
    lower_rmse = mean_rmse - num_sigma * sd_rmse
    higher_rmse = mean_rmse + num_sigma * sd_rmse
    ax_rmse.plot(roi_densities, mean_rmse, label='GBRT', **kw)
    ax_rmse.fill_between(roi_densities, lower_rmse, higher_rmse, facecolor='b', edgecolor='b', alpha=.3)

    mean_r2 = errors['gbrt']['r2'].mean(axis=0)
    sd_r2 = np.sqrt(errors['gbrt']['r2'].var(axis=0))
    lower_r2 = mean_r2 - num_sigma * sd_r2
    higher_r2 = mean_r2 + num_sigma * sd_r2
    ax_r2.plot(roi_densities, errors['gbrt']['r2'].mean(axis=0), **kw)
    ax_r2.fill_between(roi_densities, lower_r2, higher_r2, facecolor='b', edgecolor='b', alpha=.2)

    # Plot Linear Regression results
    kw = {'alpha': .7, 'lw': 1, 'marker': 'o', 'markersize': 4, 'markeredgecolor': 'r', 'color': 'r'}
    mean_rmse = errors['linear']['rmse'].mean(axis=0)
    sd_rmse = np.sqrt(errors['linear']['rmse'].var(axis=0))
    lower_rmse = mean_rmse - num_sigma * sd_rmse
    higher_rmse = mean_rmse + num_sigma * sd_rmse
    ax_rmse.plot(roi_densities, mean_rmse, label='linear regression', **kw)
    ax_rmse.fill_between(roi_densities, lower_rmse, higher_rmse, facecolor='r', edgecolor='r', alpha=.3)

    mean_r2 = errors['linear']['r2'].mean(axis=0)
    sd_r2 = np.sqrt(errors['linear']['r2'].var(axis=0))
    lower_r2 = mean_r2 - num_sigma * sd_r2
    higher_r2 = mean_r2 + num_sigma * sd_r2
    ax_r2.plot(roi_densities, errors['linear']['r2'].mean(axis=0), **kw)
    ax_r2.fill_between(roi_densities, lower_r2, higher_r2, facecolor='r', edgecolor='r', alpha=.2)

    # Plot constant predictor results
    kw = {'alpha': .7, 'lw': 1, 'ls': '--', 'marker': 'o', 'markersize': 4, 'color': 'k', 'markeredgecolor': 'k'}
    ax_rmse.plot(roi_densities, errors['constant']['rmse'].mean(axis=0), label='constant predictor', **kw)
    ax_r2.plot(roi_densities, errors['constant']['r2'].mean(axis=0), **kw)

    # Style plot
    ax_rmse.set_ylabel('Normalized RMSE', fontsize=14)
    ax_r2.set_ylabel('$r^2$', fontsize=16)
    ax_r2.set_ylim(-.05, 1)
    ax_r2.set_xlim(min(roi_densities) - 5, max(roi_densities) + 5)
    ax_r2.set_yticks(np.arange(0, 1.01, .1))
    ax_rmse.set_ylim(0, .5)
    ax_rmse.set_yticks(np.arange(0, .51, .05))
    ax_rmse.set_xlim(*ax_r2.get_xlim())
    for ax in [ax_rmse, ax_r2]:
        # FIXME force xlims to be the same
        ax.set_xlabel('density of training points in ROI ($10^{-6}$ km $^{-2}$)',
                      fontsize=14)
        ax.grid(True)
    ax_rmse.legend(prop={'size':15}, numpoints=1)
    fig.tight_layout()
コード例 #4
0
def plot_feature_importance_analysis(data, roi_density, radius, ncenters,
                                     dumpfile=None, replot=False, **gbrt_params):
    """ Plots feature importance results (cf. Friedman 2001 or ESL) averaged
        over ncenters rounds of cross validation for given ROI training density
        and radius.
    """
    raw_features = list(data)
    for f in ['lat', 'lon', 'GHF']:
        raw_features.pop(raw_features.index(f))

    # a map to collapse categorical dummies for feature importances. The dict
    # has keys in `raw_features` indices, and values in `features` indices.
    decat_by_raw_idx = {}
    features = []
    for idx, f in enumerate(raw_features):
        match = [c for c in CATEGORICAL_FEATURES if c == f[:len(c)]]
        if match:
            assert len(match) == 1
            try:
                i = features.index(match[0])
            except ValueError:
                features.append(match[0])
                i = len(features) - 1
            decat_by_raw_idx[idx] = i
            continue
        features.append(f)
        decat_by_raw_idx[idx] = len(features) - 1

    if replot:
        res = pickle_load(dumpfile)
        gbrt_importances = res['gbrt_importances']
    else:
        # at this point features contains original feature names and raw_features
        # contains categorical dummies, in each round we map
        # feature_importances_, which has the same size as raw_features, to feature
        # importances for original features by adding the importances of each
        # categorical dummy.

        centers = [random_prediction_ctr(data, radius, min_density=roi_density) for _ in range(ncenters)]
        gbrt_importances = np.zeros([ncenters, len(features)])
        for center_idx, center in enumerate(centers):
            sys.stderr.write('%d / %d ' % (center_idx + 1, ncenters))
            X_train, y_train, X_test, y_test = \
                split_with_circle(data, center, roi_density=roi_density, radius=radius)
            X_train = X_train.drop(['lat', 'lon'], axis=1)
            X_test = X_test.drop(['lat', 'lon'], axis=1)
            assert not X_test.empty

            gbrt = train_gbrt(X_train, y_train, **gbrt_params)
            raw_importances = gbrt.feature_importances_
            for idx, value in enumerate(raw_importances):
                gbrt_importances[center_idx][decat_by_raw_idx[idx]] += value

        if dumpfile:
            res = {'gbrt_importances': gbrt_importances, 'features': features}
            pickle_dump(dumpfile, res, 'feature importances')

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)

    means = gbrt_importances.mean(axis=0)
    sds = np.sqrt(gbrt_importances.var(axis=0))
    sort_order = list(np.argsort(means))

    feature_names = [FEATURE_NAMES[features[i]] for i in sort_order]

    means, sds = [means[i] for i in sort_order], [sds[i] for i in sort_order]
    _yrange = [i-0.4 for i in range(len(features))] # labels in the middle of bars
    ax.barh(_yrange, means, color='k', ecolor='k', alpha=.3, xerr=sds[::-1])
    ax.set_ylim(-1, len(features))
    ax.grid(True)
    ax.set_yticks(range(len(features)))
    ax.set_yticklabels(feature_names, rotation=0, fontsize=10)
    ax.set_title('GBRT feature importances')
    fig.subplots_adjust(left=0.3) # for vertical xtick labels
コード例 #5
0
def plot_sensitivity_analysis(data, roi_density, radius, noise_amps, ncenters,
                              replot=False, dumpfile=None):
    """ For each given noise amplitude, performs cross-validation on ncenters
        with given radius and density, the average over ncenters of
        normalized rmse between noise-free predictions and predictions based on
        noisy GHF is calculated. This perturbation in predictions is plotted
        against the expected absolute value of applied noise (amplitude).

        Both GBRT and linear regression are considered.
        One standard deviation is indicated by a shaded region.
        The case of Greenland is considered separately and overlayed.
    """
    fig = plt.figure(figsize=(10, 5))
    ax_gbrt = fig.add_subplot(1, 2, 1)
    ax_lin = fig.add_subplot(1, 2, 2)

    def _predict(X_train, y_train, X_test, noise_amp):
        # If noise ~ N(0, s^2), then mean(|noise|) = s * sqrt(2/pi),
        # cf. https://en.wikipedia.org/wiki/Half-normal_distribution
        # To get noise with mean(|noise|) / mean(y) = noise_ampl, we need to
        # have noise ~ N(0, s*^2) with s* = mean(y) * noise_ampl * sqrt(pi/2).
        noise = np.mean(y_train) * noise_amp * np.sqrt(np.pi/ 2) * np.random.randn(len(y_train))
        gbrt = train_gbrt(X_train.drop(['lat', 'lon'], axis=1),
                          y_train + noise)
        lin_reg = train_linear(X_train.drop(['lat', 'lon'], axis=1),
                               y_train + noise)
        gbrt_pred = gbrt.predict(X_test.drop(['lat', 'lon'], axis=1))
        lin_pred = lin_reg.predict(X_test.drop(['lat', 'lon'], axis=1))
        return gbrt_pred, lin_pred

    if replot:
        res = pickle_load(dumpfile)
        rmses_gbrt, rmses_lin = res['rmses_gbrt'], res['rmses_lin']
        noise_amps = res['noise_amps']
    else:
        centers = [random_prediction_ctr(data, radius, min_density=roi_density)
                   for _ in range(ncenters)]
        y0 = []
        centers = [None] + centers # one extra "center" (Greenland)
        rmses_gbrt = np.zeros((len(centers), len(noise_amps)))
        rmses_lin = np.zeros((len(centers), len(noise_amps)))
        for idx_ctr, center in enumerate(centers):
            if center is None:
                # Greenland case
                X_train, y_train, X_test = greenland_train_test_sets()
            else:
                X_train, y_train, X_test, _ = \
                    split_with_circle(data, center, roi_density=roi_density, radius=radius)
            sys.stderr.write('(ctr %d) noise_amp = 0.00 ' % (idx_ctr + 1))
            y0_gbrt, y0_lin = _predict(X_train, y_train, X_test, 0)
            for idx_noise, noise_amp in enumerate(noise_amps):
                sys.stderr.write('(ctr %d) noise_amp = %.2f ' % (idx_ctr + 1, noise_amp))
                y_gbrt, y_lin = _predict(X_train, y_train, X_test, noise_amp)
                rmse_gbrt = sqrt(mean_squared_error(y0_gbrt, y_gbrt)) / np.mean(y0_gbrt)
                rmse_lin = sqrt(mean_squared_error(y0_lin, y_lin)) / np.mean(y0_lin)
                rmses_gbrt[idx_ctr][idx_noise] = rmse_gbrt
                rmses_lin[idx_ctr][idx_noise] = rmse_lin

        if dumpfile:
            res = {'rmses_lin': rmses_lin, 'rmses_gbrt': rmses_gbrt, 'noise_amps': noise_amps}
            pickle_dump(dumpfile, res, 'sensitivity analysis')

    kw = dict(alpha=.6, lw=2, marker='o', color='k', label='global average')
    noise_amps = np.append([0], noise_amps)

    num_sigma = 1
    mean_rmse = rmses_lin[1:].mean(axis=0)
    sd_rmse = np.sqrt(rmses_lin[1:].var(axis=0))
    lower_rmse = np.append([0], mean_rmse - num_sigma * sd_rmse)
    higher_rmse = np.append([0], mean_rmse + num_sigma * sd_rmse)
    mean_rmse = np.append([0], mean_rmse)
    ax_lin.plot(noise_amps, mean_rmse, **kw)
    ax_lin.fill_between(noise_amps, lower_rmse, higher_rmse, facecolor='k', edgecolor='k', alpha=.2)

    mean_rmse = rmses_gbrt[1:].mean(axis=0)
    sd_rmse = np.sqrt(rmses_gbrt[1:].var(axis=0))
    lower_rmse = np.append([0], mean_rmse - num_sigma * sd_rmse)
    higher_rmse = np.append([0], mean_rmse + num_sigma * sd_rmse)
    mean_rmse = np.append([0], mean_rmse)
    ax_gbrt.plot(noise_amps, mean_rmse, **kw)
    ax_gbrt.fill_between(noise_amps, lower_rmse, higher_rmse, facecolor='k', edgecolor='k', alpha=.2)

    # Greenland case
    kw = dict(color='g', alpha=.5, lw=2.5, marker='o',
              markeredgewidth=0.0, label='Greenland')
    ax_lin.plot(noise_amps, np.append([0], rmses_lin[0]), **kw)
    ax_gbrt.plot(noise_amps, np.append([0], rmses_gbrt[0]), **kw)

    for ax in [ax_gbrt, ax_lin]:
        ax.set_xlabel('Relative magnitude of noise in training GHF', fontsize=12)
        ax.set_xlim(0, max(noise_amps) * 1.1)
        ax.set_aspect('equal')
        ax.grid(True)
        ax.set_xticks(np.arange(0, .35, .05))
        ax.set_yticks(np.arange(0, .35, .05))
        ax.set_xlim(-.025, .325)
        ax.set_ylim(-.025, .325)
        ax.legend(loc=1, fontsize=12)
    ax_gbrt.set_ylabel(r'Normalized RMSE difference in $\widehat{GHF}_{\mathrm{GBRT}}$', fontsize=12)
    ax_lin.set_ylabel(r'Normalized RMSE difference in $\widehat{GHF}_{\mathrm{lin}}$', fontsize=12)

    fig.tight_layout()
コード例 #6
0
def plot_error_by_radius(data, roi_density, radii, ncenters, region='NA-WE',
                         replot=False, dumpfile=None, **gbrt_params):
    """ ncenters random centers are picked and over all given radii.
        Cross-validation errors (normalized RMSE and r2) are averaged over
        ncenters. One standard deviation mark is shown by a shaded region.
    """
    fig = plt.figure(figsize=(11,5))
    ax_rmse, ax_r2 = fig.add_subplot(1, 2, 1), fig.add_subplot(1, 2, 2)

    if replot:
        results = pickle_load(dumpfile)
    else:
        centers = [
            # HACK there's no easy way to check if for a given center the
            # demanded density is attainable for circles of all desired radii.
            # Ask for twice the density we need on the largest radius and hope
            # for the best!
            random_prediction_ctr(data, max(radii), region=region, min_density=2*roi_density)
            for _ in range(ncenters)
        ]
        shape = (ncenters, len(radii))
        # blank error matrix (keyed by center number and roi density index),
        # used to initialize multiple components of the results dictionary.
        blank = np.zeros(shape)

        results = {
            'ncenters': ncenters,
            'radii': radii,
            'errors': {
                'gbrt': {'rmse': blank.copy(), 'r2': blank.copy()},
                'linear': {'rmse': blank.copy(), 'r2': blank.copy()},
                'constant': {'rmse': blank.copy(), 'r2': blank.copy()},
            },
        }
        for idx_radius, radius in enumerate(radii):
            for idx_ctr, center in enumerate(centers):
                sys.stderr.write('# radius = %.0f, center %d/%d ' % (radius, idx_ctr + 1, ncenters))
                comp = compare_models(data, roi_density, radius, center, **gbrt_params)
                for k in results['errors'].keys():
                    # k is one of gbrt, linear, or constant
                    results['errors'][k]['r2'][idx_ctr][idx_radius] = comp[k][0]
                    results['errors'][k]['rmse'][idx_ctr][idx_radius] = comp[k][1]
        if dumpfile:
            pickle_dump(dumpfile, results, comment='GBRT performance results')

    errors = results['errors']
    radii = results['radii']
    ncenters = results['ncenters']

    num_sigma = 1

    # Plot GBRT results
    kw = {'alpha': .9, 'lw': 1, 'marker': 'o', 'markersize': 4, 'color': 'b'}
    mean_rmse = errors['gbrt']['rmse'].mean(axis=0)
    sd_rmse = np.sqrt(errors['gbrt']['rmse'].var(axis=0))
    lower_rmse = mean_rmse - num_sigma * sd_rmse
    higher_rmse = mean_rmse + num_sigma * sd_rmse
    ax_rmse.plot(radii, mean_rmse, label='GBRT', **kw)
    ax_rmse.fill_between(radii, lower_rmse, higher_rmse, facecolor='b', edgecolor='b', alpha=.3)

    mean_r2 = errors['gbrt']['r2'].mean(axis=0)
    sd_r2 = np.sqrt(errors['gbrt']['r2'].var(axis=0))
    lower_r2 = mean_r2 - num_sigma * sd_r2
    higher_r2 = mean_r2 + num_sigma * sd_r2
    ax_r2.plot(radii, errors['gbrt']['r2'].mean(axis=0), **kw)
    ax_r2.fill_between(radii, lower_r2, higher_r2, facecolor='b', edgecolor='b', alpha=.2)

    # Plot Linear Regression results
    kw = {'alpha': .7, 'lw': 1, 'marker': 'o', 'markersize': 4, 'markeredgecolor': 'r', 'color': 'r'}
    mean_rmse = errors['linear']['rmse'].mean(axis=0)
    sd_rmse = np.sqrt(errors['linear']['rmse'].var(axis=0))
    lower_rmse = mean_rmse - num_sigma * sd_rmse
    higher_rmse = mean_rmse + num_sigma * sd_rmse
    ax_rmse.plot(radii, mean_rmse, label='linear regression', **kw)
    ax_rmse.fill_between(radii, lower_rmse, higher_rmse, facecolor='r', edgecolor='r', alpha=.3)

    mean_r2 = errors['linear']['r2'].mean(axis=0)
    sd_r2 = np.sqrt(errors['linear']['r2'].var(axis=0))
    lower_r2 = mean_r2 - num_sigma * sd_r2
    higher_r2 = mean_r2 + num_sigma * sd_r2
    ax_r2.plot(radii, errors['linear']['r2'].mean(axis=0), **kw)
    ax_r2.fill_between(radii, lower_r2, higher_r2, facecolor='r', edgecolor='r', alpha=.2)

    # Plot constant predictor results
    kw = {'alpha': .7, 'lw': 1, 'ls': '--', 'marker': 'o', 'markersize': 4, 'color': 'k', 'markeredgecolor': 'k'}
    ax_rmse.plot(radii, errors['constant']['rmse'].mean(axis=0), label='constant predictor', **kw)
    ax_r2.plot(radii, errors['constant']['r2'].mean(axis=0), **kw)

    # Style plot
    ax_rmse.set_ylabel('Normalized RMSE', fontsize=14)
    ax_r2.set_ylabel('$r^2$', fontsize=16)
    ax_r2.set_ylim(-.05, 1)
    ax_r2.set_xlim(min(radii) - 100, max(radii) + 100)
    ax_r2.set_yticks(np.arange(0, 1.01, .1))
    ax_rmse.set_ylim(0, .5)
    ax_rmse.set_yticks(np.arange(0, .51, .05))
    ax_rmse.set_xlim(*ax_r2.get_xlim())
    for ax in [ax_rmse, ax_r2]:
        # FIXME force xlims to be the same
        ax.set_xlabel('radius of ROI (km)', fontsize=14)
        ax.grid(True)
    ax_rmse.legend(prop={'size':15}, numpoints=1)
    fig.tight_layout()