コード例 #1
0
    def register_CNN(self, source_image_path, target_image_path):
        source_image_raw = io.imread(source_image_path)
        target_image_raw = io.imread(target_image_path)
        # testImage = io.imread(source_image_path)
        # testImage = cv2.resize(testImage,(240,240))

        source_image_resize = cv2.resize(source_image_raw, (240, 240))
        target_image_resize = cv2.resize(target_image_raw, (240, 240))

        source_image = source_image_raw[:, :, 0:1]
        target_image = target_image_raw[:, :, 2:3]

        source_image_var = preprocess_image(source_image,
                                            resize=True,
                                            use_cuda=self.use_cuda)
        target_image_var = preprocess_image(target_image,
                                            resize=True,
                                            use_cuda=self.use_cuda)

        batch = {
            'source_image': source_image_var,
            'target_image': target_image_var
        }
        if self.ntg_model is not None:
            theta = self.ntg_model(batch)
            opencv_theta = theta2param(theta.view(-1, 2, 3),
                                       240,
                                       240,
                                       use_cuda=self.use_cuda)
            cnn_image_warped_batch = single_affine_transform_opencv(
                source_image_resize, opencv_theta[0].detach().numpy())
            return cnn_image_warped_batch
        else:
            print('ntg_model is None')
コード例 #2
0
def evaluate(theta_estimate_batch,
             theta_GT_batch,
             source_image_batch,
             target_image_batch,
             use_cuda=True):
    # 将pytorch的变换参数转为opencv的变换参数
    theta_opencv = theta2param(theta_estimate_batch.view(-1, 2, 3),
                               240,
                               240,
                               use_cuda=use_cuda)

    # P5使用传统NTG方法进行优化cnn的结果
    ntg_param = estimate_param_batch(source_image_batch,
                                     target_image_batch,
                                     None,
                                     itermax=600)
    ntg_param_pytorch = param2theta(ntg_param, 240, 240, use_cuda=use_cuda)
    cnn_ntg_param_batch = estimate_param_batch(source_image_batch,
                                               target_image_batch,
                                               theta_opencv,
                                               itermax=800)
    cnn_ntg_param_pytorch_batch = param2theta(cnn_ntg_param_batch,
                                              240,
                                              240,
                                              use_cuda=use_cuda)
コード例 #3
0
def visualize_spec_epoch_result(source_image_batch,
                                target_image_batch,
                                theta_GT_batch,
                                theta_estimate_batch,
                                use_cuda=True):
    theta_opencv = theta2param(theta_estimate_batch.view(-1, 2, 3),
                               240,
                               240,
                               use_cuda=use_cuda)

    grid_loss = GridLoss(use_cuda=use_cuda)
    # 使用传统ntg方法的结果
    iter_list = [800]
    # iter_list = [100,200]

    # for i in range(len(iter_list)):
    #
    #     start_time = time.time()
    #     ntg_param_opencv_batch = estimate_param_batch(source_image_batch, target_image_batch, theta_opencv,
    #                                                   iter_list[i])
    #     elpased1 = calculate_diff_time(start_time)
    #
    #     start_time = time.time()
    #     # ntg_param_opencv_batch_traditional = estimate_param_batch(source_image_batch, target_image_batch, None,
    #     #                                                           iter_list[i])
    #     elpased2 = calculate_diff_time(start_time)
    #     print('使用ntg方法', str(len(source_image_batch)) + '对图片用时:', '有初值:', str(elpased1), '无初值:', str(elpased2))
    #
    #     ntg_param_pytorch_batch = param2theta(ntg_param_opencv_batch, 240, 240, use_cuda=use_cuda)
    #     # ntg_param_pytorch_batch_traditional = param2theta(ntg_param_opencv_batch_traditional, 240, 240,
    #     #                                                   use_cuda=use_cuda)
    #
    #     # print(str(iter_list[i])+''+str(grid_loss.compute_grid_loss(ntg_param_opencv_batch,theta_GT_batch)))
    #     grid_loss_batch.append(grid_loss.compute_grid_loss(ntg_param_pytorch_batch, theta_GT_batch).numpy().tolist())
    #     # grid_loss_triditional_batch.append(
    #     #     grid_loss.compute_grid_loss(ntg_param_pytorch_batch_traditional, theta_GT_batch).numpy())
    ntg_param_opencv_batch = estimate_param_batch(source_image_batch,
                                                  target_image_batch,
                                                  theta_opencv, iter_list[0])
    ntg_param_opencv_batch_traditional = estimate_param_batch(
        source_image_batch, target_image_batch, None, iter_list[0])
    ntg_param_pytorch_batch = param2theta(ntg_param_opencv_batch,
                                          240,
                                          240,
                                          use_cuda=use_cuda)
    ntg_param_pytorch_batch_traditional = param2theta(
        ntg_param_opencv_batch_traditional, 240, 240, use_cuda=use_cuda)
    grid_loss_batch = grid_loss.compute_grid_loss(
        ntg_param_pytorch_batch, theta_GT_batch).numpy().tolist()
    grid_loss_traditional_batch = grid_loss.compute_grid_loss(
        ntg_param_pytorch_batch_traditional, theta_GT_batch).numpy().tolist()

    return grid_loss_batch, grid_loss_traditional_batch
コード例 #4
0
def visualize_compare_result(source_image_batch,
                             target_image_batch,
                             theta_GT_batch,
                             theta_estimate_batch,
                             use_cuda=True):
    # P2真值结果
    warped_image_GT_list = affine_transform_pytorch(source_image_batch,
                                                    theta_GT_batch)

    # P3使用CNN配准的结果
    warped_image_list = affine_transform_pytorch(source_image_batch,
                                                 theta_estimate_batch)

    # P4使用传统ntg方法的结果
    ntg_param_batch = estimate_param_batch(source_image_batch,
                                           target_image_batch, None)
    ntg_image_warped_batch = affine_transform_opencv(source_image_batch,
                                                     ntg_param_batch)

    # 将pytorch的变换参数转为opencv的变换参数
    theta_opencv = theta2param(theta_estimate_batch.view(-1, 2, 3),
                               240,
                               240,
                               use_cuda=use_cuda)

    # P5使用传统NTG方法进行优化cnn的结果
    cnn_ntg_param_batch = estimate_param_batch(source_image_batch,
                                               target_image_batch,
                                               theta_opencv)
    cnn_ntg_image_warped_batch = affine_transform_opencv(
        source_image_batch, cnn_ntg_param_batch)

    # 转换为pytorch的参数再次进行变换,主要为了验证使用opencv和pytorch的变换方式一样
    # ntg_param_pytorch_batch = param2theta(ntg_param_batch, 240, 240, use_cuda=use_cuda)
    # ntg_image_warped_pytorch_batch = affine_transform_pytorch(source_image_list, ntg_param_pytorch_batch)

    # 将结果可视化
    plot_title = [
        'source_img', 'target_img', 'cnn_img', 'ntg_img', 'cnn_ntg_img'
    ]
    plot_batch_result(source_image_batch,
                      target_image_batch,
                      warped_image_list,
                      ntg_image_warped_batch,
                      cnn_ntg_image_warped_batch,
                      plot_title=plot_title)
コード例 #5
0
    def register_CNN_NTG(self,
                         source_image_path,
                         target_image_path,
                         itermax=800,
                         custom_pyramid_level=-1):
        source_image_raw = io.imread(source_image_path)
        target_image_raw = io.imread(target_image_path)

        source_image_resize = cv2.resize(source_image_raw, (240, 240))
        target_image_resize = cv2.resize(target_image_raw, (240, 240))

        source_image = source_image_raw[:, :, 0:1]
        target_image = target_image_raw[:, :, 2:3]

        source_image_var = preprocess_image(source_image,
                                            resize=True,
                                            use_cuda=self.use_cuda)
        target_image_var = preprocess_image(target_image,
                                            resize=True,
                                            use_cuda=self.use_cuda)

        batch = {
            'source_image': source_image_var,
            'target_image': target_image_var
        }
        if self.ntg_model is not None:
            theta = self.ntg_model(batch)
            theta_opencv = theta2param(theta.view(-1, 2, 3),
                                       240,
                                       240,
                                       use_cuda=self.use_cuda)
            cnn_ntg_param_batch = estimate_affine_param(
                target_image_resize[:, :, 0],
                source_image_resize[:, :, 2],
                theta_opencv[0].detach().numpy(),
                itermax=itermax,
                custom_pyramid_level=custom_pyramid_level)
            ntg_image_warped_batch = single_affine_transform_opencv(
                source_image_resize, cnn_ntg_param_batch)
            return ntg_image_warped_batch

        else:
            print('ntg_model is None')
コード例 #6
0
def iterDataset(dataloader,
                pair_generator,
                ntg_model,
                cvpr_model,
                vis,
                threshold=10,
                use_cuda=True,
                use_traditional=False,
                use_combine=False,
                save_mat=False,
                use_cvpr=False,
                use_cnn=False):
    '''
    迭代数据集中的批次数据,进行处理
    :param dataloader:
    :param pair_generator:
    :param ntg_model:
    :param use_cuda:
    :return:
    '''

    fn_grid_loss = GridLoss(use_cuda=use_cuda)
    grid_loss_cnn_list = []
    grid_loss_cvpr_list = []
    grid_loss_ntg_list = []
    grid_loss_comb_list = []

    mutual_info_cnn_list = []
    mutual_info_cvpr_list = []
    mutual_info_ntg_list = []
    mutual_info_comb_list = []

    ntg_loss_total = 0
    cnn_ntg_loss_total = 0

    normalize_func = NormalizeCAVEDict(["image"])

    for batch_idx, batch in enumerate(dataloader):
        # if batch_idx == 1:
        #     print('==1 break')
        #     break

        if batch_idx % 5 == 0:
            print('test batch: [{}/{} ({:.0f}%)]'.format(
                batch_idx, len(dataloader),
                100. * batch_idx / len(dataloader)))

        pair_batch = pair_generator(
            batch)  # image[batch_size,1,w,h] theta_GT[batch_size,2,3]

        # raw_source_image_batch = normalize_func.scale_image_batch(pair_batch['raw_source_image_batch'])
        # raw_target_image_batch = normalize_func.scale_image_batch(pair_batch['raw_target_image_batch'])
        # raw_source_image_batch = pair_batch['raw_source_image_batch']
        # raw_target_image_batch = pair_batch['raw_target_image_batch']

        raw_source_image_batch = pair_batch['source_image']
        raw_target_image_batch = pair_batch['target_image']

        pair_batch['source_image'] = normalize_func.normalize_image_batch(
            pair_batch['source_image'])
        pair_batch['target_image'] = normalize_func.normalize_image_batch(
            pair_batch['target_image'])

        # pair_batch['source_image'] = normalize_func.scale_image_batch(pair_batch['source_image'])
        # pair_batch['target_image'] = normalize_func.scale_image_batch(pair_batch['target_image'])

        source_image_batch = pair_batch['source_image']
        target_image_batch = pair_batch['target_image']

        theta_GT_batch = pair_batch['theta_GT']
        name = pair_batch['name']
        print(name)
        # if name[0] != 'fake_and_real_tomatoes_ms.mat':
        #     continue

        if use_cnn:
            theta_estimate_batch = ntg_model(
                pair_batch)  # theta [batch_size,6]
            theta_opencv = theta2param(theta_estimate_batch.view(-1, 2, 3),
                                       240,
                                       240,
                                       use_cuda=use_cuda)
            # 网络测出来的,第1,2,3,5的值和真值是相反的,是因为在pair_generator中生成的原始图像
            # 和目标图像对换了
            loss_cnn = fn_grid_loss.compute_grid_loss(
                theta_estimate_batch.detach(), theta_GT_batch)
            grid_loss_cnn_list.append(loss_cnn.detach().cpu().numpy())

        if use_cvpr:
            pair_batch['source_image'] = torch.cat(
                (source_image_batch, source_image_batch, source_image_batch),
                1)
            pair_batch['target_image'] = torch.cat(
                (target_image_batch, target_image_batch, target_image_batch),
                1)
            theta_cvpr_batch = cvpr_model(pair_batch)

            loss_cvpr = fn_grid_loss.compute_grid_loss(
                theta_cvpr_batch.detach(), theta_GT_batch)
            grid_loss_cvpr_list.append(loss_cvpr.detach().cpu().numpy())

        if use_traditional:
            with torch.no_grad():

                ntg_param_batch = estimate_aff_param_iterator(
                    source_image_batch[:, 0, :, :].unsqueeze(1),
                    target_image_batch[:, 0, :, :].unsqueeze(1),
                    None,
                    use_cuda=use_cuda,
                    itermax=800,
                    normalize_func=normalize_func)

                ntg_param_pytorch_batch = param2theta(ntg_param_batch,
                                                      240,
                                                      240,
                                                      use_cuda=use_cuda)
                loss_ntg = fn_grid_loss.compute_grid_loss(
                    ntg_param_pytorch_batch.detach(), theta_GT_batch)
                # print(theta2param(ntg_param_pytorch_batch,512,512,False))
                # print(theta2param(theta_GT_batch,512,512,False))
                # print(loss_ntg)
                grid_loss_ntg_list.append(loss_ntg.detach().cpu().numpy())

        if use_combine:
            with torch.no_grad():
                # cnn_ntg_param_batch = estimate_aff_param_iterator(raw_source_image_batch[:, 0, :, :].unsqueeze(1),
                #                                                   raw_target_image_batch[:, 0, :, :].unsqueeze(1),
                #                                                   theta_opencv, use_cuda=use_cuda, itermax=600,normalize_func=normalize_func)
                cnn_ntg_param_batch = estimate_aff_param_iterator(
                    source_image_batch[:, 0, :, :].unsqueeze(1),
                    target_image_batch[:, 0, :, :].unsqueeze(1),
                    theta_opencv,
                    use_cuda=use_cuda,
                    itermax=600,
                    normalize_func=normalize_func)

                cnn_ntg_param_pytorch_batch = param2theta(cnn_ntg_param_batch,
                                                          240,
                                                          240,
                                                          use_cuda=use_cuda)
                loss_cnn_ntg = fn_grid_loss.compute_grid_loss(
                    cnn_ntg_param_pytorch_batch.detach(), theta_GT_batch)
                grid_loss_comb_list.append(loss_cnn_ntg.detach().cpu().numpy())

        # source_image_batch = normalize_func.scale_image_batch(source_image_batch)
        # target_image_batch = normalize_func.scale_image_batch(target_image_batch)

        cnn_wraped_image = affine_transform_pytorch(source_image_batch,
                                                    theta_estimate_batch)
        cvpr_wraped_image = affine_transform_pytorch(source_image_batch,
                                                     theta_cvpr_batch)
        ntg_wraped_image = affine_transform_pytorch(source_image_batch,
                                                    ntg_param_pytorch_batch)
        cnn_ntg_wraped_image = affine_transform_pytorch(
            source_image_batch, cnn_ntg_param_pytorch_batch)
        gt_image_batch = affine_transform_pytorch(source_image_batch,
                                                  theta_GT_batch)

        # mutual_info_cnn_list.append(calculate_mutual_info_batch(cnn_wraped_image, gt_wraped_image))
        # mutual_info_cvpr_list.append(calculate_mutual_info_batch(cvpr_wraped_image, gt_wraped_image))
        # mutual_info_ntg_list.append(calculate_mutual_info_batch(ntg_wraped_image, gt_wraped_image))
        # mutual_info_comb_list.append(calculate_mutual_info_batch(cnn_ntg_wraped_image, gt_wraped_image))

        #
        normailze_visual = False
        vis.showImageBatch(source_image_batch,
                           normailze=True,
                           win='source_image_batch',
                           title='source_image_batch',
                           start_index=14)
        vis.showImageBatch(target_image_batch,
                           normailze=True,
                           win='target_image_batch',
                           title='target_image_batch',
                           start_index=14)
        vis.showImageBatch(ntg_wraped_image,
                           normailze=True,
                           win='ntg_wraped_image',
                           title='ntg_wraped_image',
                           start_index=14)
        vis.showImageBatch(cvpr_wraped_image,
                           normailze=True,
                           win='cvpr_wraped_image',
                           title='cvpr_wraped_image')
        vis.showImageBatch(cnn_wraped_image,
                           normailze=True,
                           win='cnn_wraped_image',
                           title='cnn_wraped_image')
        vis.showImageBatch(cnn_ntg_wraped_image,
                           normailze=True,
                           win='cnn_ntg_wraped_image',
                           title='cnn_ntg_wraped_image')
        vis.showImageBatch(gt_image_batch,
                           normailze=True,
                           win='gt_image_batch',
                           title='gt_image_batch')

        # print(image_name)

    # scio.savemat('mutual_info_cave_dict.mat', {'mutual_info_cnn_list':mutual_info_cnn_list,
    #                                       'mutual_info_cvpr_list':mutual_info_cvpr_list,
    #                                       'mutual_info_ntg_list':mutual_info_ntg_list,
    #                                       'mutual_info_comb_list':mutual_info_comb_list})

    grid_loss_cnn_array = np.array(grid_loss_cnn_list)
    grid_loss_ntg_array = np.array(grid_loss_ntg_list)
    grid_loss_comb_array = np.array(grid_loss_comb_list)
    grid_loss_cvpr_array = np.array(grid_loss_cvpr_list)

    # if use_cnn and save_mat:
    #     scio.savemat('exp_bigger/cnn_error.mat', {'cave_error_cnn': grid_loss_cnn_array})
    #
    # if use_traditional and save_mat:
    #     scio.savemat('exp_bigger/ntg_error.mat', {'cave_error_ntg': grid_loss_ntg_array})
    #
    # if use_combine and save_mat:
    #     scio.savemat('exp_bigger/cnn_ntg_error.mat', {'cave_error_cnn_ntg': grid_loss_comb_array})

    # scio.savemat('cave_grid_loss.mat',{'cave_cnn': grid_loss_cnn_array,
    #                              'cave_ntg': grid_loss_ntg_array,
    #                              'cave_cnn_ntg': grid_loss_comb_array,
    #                              'cave_cvpr': grid_loss_cvpr_array})

    print("网格点损失超过阈值的不计入平均值")
    print('ntg网格点损失')
    ntg_group_list = compute_average_grid_loss(grid_loss_ntg_list)
    print('cnn网格点损失')
    cnn_group_list = compute_average_grid_loss(grid_loss_cnn_list)
    print('cnn_ntg网格点损失')
    cnn_ntg_group_list = compute_average_grid_loss(grid_loss_comb_list)

    # x_list = [i for i in range(10)]
    # vis.drawGridlossGroup(x_list,ntg_group_list,cnn_group_list,cnn_ntg_group_list,cvpr_group_list,
    #                       layout_title="nir_result",win='nir_result')

    # vis.drawGridlossBar(x_list,ntg_group_list,cnn_group_list,cnn_ntg_group_list,cvpr_group_list,
    #                       layout_title="Grid_loss_histogram",win='Grid_loss_histogram')

    print("计算正确率")
    print('ntg正确率')
    compute_correct_rate(grid_loss_ntg_list, threshold=threshold)
    print('cnn正确率')
    compute_correct_rate(grid_loss_cnn_list, threshold=threshold)
    print('cnn+ntg 正确率')
    compute_correct_rate(grid_loss_comb_list, threshold=threshold)
    print('cnngeometric 正确率')
    compute_correct_rate(grid_loss_cvpr_list, threshold=threshold)
コード例 #7
0
def iterDataset(dataloader,
                pair_generator,
                ntg_model,
                cvpr_model,
                vis,
                threshold=10,
                use_cuda=True):
    '''
    迭代数据集中的批次数据,进行处理
    :param dataloader:
    :param pair_generator:
    :param ntg_model:
    :param use_cuda:
    :return:
    '''

    fn_grid_loss = GridLoss(use_cuda=use_cuda)
    grid_loss_cnn_list = []
    grid_loss_cvpr_list = []
    grid_loss_ntg_list = []
    grid_loss_comb_list = []

    mutual_info_cnn_list = []
    mutual_info_cvpr_list = []
    mutual_info_ntg_list = []
    mutual_info_comb_list = []

    ntg_loss_total = 0
    cnn_ntg_loss_total = 0

    # iter_list = [100, 200, 300, 400, 500, 600]
    iter_list = [1, 10, 30, 50, 100, 200, 300, 400, 500, 600, 700, 800]
    print(iter_list)
    grid_loss_dict = {}
    grid_loss_traditional_dict = {}
    for i in range(len(iter_list)):
        dict_key = 'key' + str(iter_list[i])
        grid_loss_dict[dict_key] = []
        grid_loss_traditional_dict[dict_key] = []

    # batch {image.shape = }
    for batch_idx, batch in enumerate(dataloader):
        #print("batch_id",batch_idx,'/',len(dataloader))

        # if batch_idx == 1:
        #     break

        if batch_idx % 5 == 0:
            print('test batch: [{}/{} ({:.0f}%)]'.format(
                batch_idx, len(dataloader),
                100. * batch_idx / len(dataloader)))

        pair_batch = pair_generator(
            batch)  # image[batch_size,1,w,h] theta_GT[batch_size,2,3]

        theta_estimate_batch = ntg_model(pair_batch)  # theta [batch_size,6]

        theta_cvpr_estimate_batch = cvpr_model(pair_batch)

        source_image_batch = pair_batch['source_image']
        target_image_batch = pair_batch['target_image']
        theta_GT_batch = pair_batch['theta_GT']
        image_name = pair_batch['name']

        # warped_image_batch = affine_transform_pytorch(source_image_batch, theta_estimate_batch)
        # gt_image_batch = affine_transform_pytorch(source_image_batch, theta_GT_batch)
        # cvpr_wraped_image = affine_transform_pytorch(source_image_batch, theta_cvpr_estimate_batch)

        # loss, g1xy, g2xy = loss_fn(target_image_batch, warped_image_batch)
        #print("one batch ntg:",loss.item())
        # ntg_loss_total += loss.item()

        # 显示CNN配准结果
        # print("显示图片")
        #visualize_cnn_result(source_image_batch,target_image_batch,theta_estimate_batch,vis)
        # #
        # time.sleep(10)
        # 显示一个epoch的对比结果
        #visualize_compare_result(source_image_batch,target_image_batch,theta_GT_batch,theta_estimate_batch,use_cuda=use_cuda)

        # 显示多个epoch的折线图
        # visualize_iter_result(source_image_batch[:, 0, :, :].unsqueeze(1),target_image_batch[:, 0, :, :].unsqueeze(1),
        #                       theta_GT_batch,theta_estimate_batch,
        #                       grid_loss_dict,grid_loss_traditional_dict,use_cuda=use_cuda)
        # continue

        ## 计算网格点损失配准误差
        # 将pytorch的变换参数转为opencv的变换参数
        theta_opencv = theta2param(theta_estimate_batch.view(-1, 2, 3),
                                   240,
                                   240,
                                   use_cuda=use_cuda)

        # P5使用传统NTG方法进行优化cnn的结果
        #ntg_param = estimate_param_batch(source_image_batch,target_image_batch,None,itermax=600)
        #ntg_param_pytorch = param2theta(ntg_param,240,240,use_cuda=use_cuda)

        #print('使用并行ntg进行估计')
        with torch.no_grad():

            ntg_param_batch = estimate_aff_param_iterator(
                source_image_batch[:, 0, :, :].unsqueeze(1),
                target_image_batch[:, 0, :, :].unsqueeze(1),
                None,
                use_cuda=use_cuda,
                itermax=900)

            cnn_ntg_param_batch = estimate_aff_param_iterator(
                source_image_batch[:, 0, :, :].unsqueeze(1),
                target_image_batch[:, 0, :, :].unsqueeze(1),
                theta_opencv,
                use_cuda=use_cuda,
                itermax=900)
        cnn_ntg_param_pytorch_batch = param2theta(cnn_ntg_param_batch,
                                                  240,
                                                  240,
                                                  use_cuda=use_cuda)
        ntg_param_pytorch_batch = param2theta(ntg_param_batch,
                                              240,
                                              240,
                                              use_cuda=use_cuda)
        # cnn_ntg_wraped_image = affine_transform_pytorch(source_image_batch, cnn_ntg_param_pytorch_batch)
        # ntg_wraped_image = affine_transform_pytorch(source_image_batch, ntg_param_pytorch_batch)

        # combine_loss, _, _ = loss_fn(target_image_batch, cnn_ntg_wraped_image)

        # cnn_ntg_loss_total += combine_loss.item()

        # 网络测出来的,第1,2,3,5的值和真值是相反的,是因为在pair_generator中生成的原始图像
        # 和目标图像对换了
        loss_cvpr_2018 = fn_grid_loss.compute_grid_loss(
            theta_cvpr_estimate_batch, theta_GT_batch)
        loss_cnn = fn_grid_loss.compute_grid_loss(
            theta_estimate_batch.detach(), theta_GT_batch)
        loss_ntg = fn_grid_loss.compute_grid_loss(
            ntg_param_pytorch_batch.detach(), theta_GT_batch)
        loss_cnn_ntg = fn_grid_loss.compute_grid_loss(
            cnn_ntg_param_pytorch_batch.detach(), theta_GT_batch)

        grid_loss_ntg_list.append(loss_ntg.detach().cpu().numpy())
        grid_loss_cnn_list.append(loss_cnn.detach().cpu().numpy())
        grid_loss_comb_list.append(loss_cnn_ntg.detach().cpu().numpy())
        grid_loss_cvpr_list.append(loss_cvpr_2018.detach().cpu().numpy())

        # vis.showImageBatch(source_image_batch,normailze=True,win='source_image_batch',title='source_image_batch')
        # vis.showImageBatch(target_image_batch,normailze=True,win='target_image_batch',title='target_image_batch')
        # vis.showImageBatch(warped_image_batch,normailze=True,win='warped_image_batch',title='cnn')
        # vis.showImageBatch(cnn_ntg_wraped_image,normailze=True,win='cnn_ntg_wraped_image',title='ntg_pytorch')
        # vis.showImageBatch(gt_image_batch,normailze=True,win='gt_image_batch',title='gt_image_batch')

        # mutual_info_cnn_list.append(calculate_mutual_info_batch(warped_image_batch,gt_image_batch))
        # mutual_info_cvpr_list.append(calculate_mutual_info_batch(cvpr_wraped_image,gt_image_batch))
        # mutual_info_ntg_list.append(calculate_mutual_info_batch(ntg_wraped_image,gt_image_batch))
        # mutual_info_comb_list.append(calculate_mutual_info_batch(cnn_ntg_wraped_image,gt_image_batch))

        # print(image_name)

        # 显示特定epoch的gridloss的直方图
        # g_loss,g_trad_loss = visualize_spec_epoch_result(source_image_batch, target_image_batch, theta_GT_batch, theta_estimate_batch,
        #                             use_cuda=use_cuda)
        # grid_loss_hist.append(g_loss)
        # grid_loss_traditional_hist.append(g_trad_loss)

        # loss_cnn = grid_loss.compute_grid_loss(theta_estimate_batch,theta_GT_list)
        #
        # loss_cnn_ntg = grid_loss.compute_grid_loss(cnn_ntg_param,theta_GT_list)

    # scio.savemat('grid_loss_dict800.mat',grid_loss_dict)
    # scio.savemat('grid_loss_traditional_dict800.mat',grid_loss_traditional_dict)
    # return

    # scio.savemat('mutual_info_dict.mat', {'mutual_info_cnn_list':mutual_info_cnn_list,
    #                                       'mutual_info_cvpr_list':mutual_info_cvpr_list,
    #                                       'mutual_info_ntg_list':mutual_info_ntg_list,
    #                                       'mutual_info_comb_list':mutual_info_comb_list})

    grid_loss_ntg_array = np.array(grid_loss_ntg_list)
    grid_loss_cnn_array = np.array(grid_loss_cnn_list)
    grid_loss_comb_array = np.array(grid_loss_comb_list)
    grid_loss_cvpr_array = np.array(grid_loss_cvpr_list)
    scio.savemat(
        'grid_loss_voc2011_test_iter900.mat', {
            'grid_loss_ntg_array': grid_loss_ntg_array,
            'grid_loss_cvpr_array': grid_loss_cvpr_array,
            'grid_loss_cnn_array': grid_loss_cnn_array,
            'grid_loss_comb_array': grid_loss_comb_array
        })

    print("网格点损失超过阈值的不计入平均值")
    print('ntg网格点损失')
    ntg_group_list = compute_average_grid_loss(grid_loss_ntg_list)
    print('cnn网格点损失')
    cnn_group_list = compute_average_grid_loss(grid_loss_cnn_list)
    print('cnn_ntg网格点损失')
    cnn_ntg_group_list = compute_average_grid_loss(grid_loss_comb_list)
    print('cvpr网格点损失')
    cvpr_group_list = compute_average_grid_loss(grid_loss_cvpr_list)

    x_list = [i for i in range(10)]
    # vis.drawGridlossGroup(x_list,ntg_group_list,cnn_group_list,cnn_ntg_group_list,cvpr_group_list,
    #                       layout_title="nir_result",win='nir_result')

    # vis.drawGridlossBar(x_list,ntg_group_list,cnn_group_list,cnn_ntg_group_list,cvpr_group_list,
    #                       layout_title="Grid_loss_histogram",win='Grid_loss_histogram')
    # vis.getVisdom().line(x_list,cnn_group_list)
    # vis.getVisdom().line(X=np.column_stack(x_list,x_list),
    #                      Y =np.column_stack(cnn_group_list,cnn_ntg_group_list))

    print("计算CNN平均NTG值", ntg_loss_total / len(dataloader))
    print("计算CNN+NTG平均NTG值", cnn_ntg_loss_total / len(dataloader))

    print("计算正确率")
    print('ntg正确率')
    compute_correct_rate(grid_loss_ntg_list, threshold=threshold)
    print('cnn正确率')
    compute_correct_rate(grid_loss_cnn_list, threshold=threshold)
    print('cnn+ntg 正确率')
    compute_correct_rate(grid_loss_comb_list, threshold=threshold)
    print('cvpr正确率')
    compute_correct_rate(grid_loss_cvpr_list, threshold=threshold)
コード例 #8
0
def visualize_iter_result(source_image_batch,
                          target_image_batch,
                          theta_GT_batch,
                          theta_estimate_batch,
                          grid_loss_dict,
                          grid_loss_traditional_dict,
                          use_cuda=True):
    theta_opencv = theta2param(theta_estimate_batch.view(-1, 2, 3),
                               240,
                               240,
                               use_cuda=use_cuda)

    grid_loss = GridLoss(use_cuda=use_cuda)
    # 使用传统ntg方法的结果
    # iter_list = [300,600,1000,1500,2000]

    #iter_list = [100,200]

    # 归一化互信息数据
    # matual_info_list = []
    # matual_info_traditional_list = []
    # matual_info_list_batch = []
    # matual_info_traditional_list_batch = []

    # grid_loss_batch = []
    # grid_loss_triditional_batch = []

    # iter_list = [100, 200, 300, 400, 500, 600]
    iter_list = [1, 10, 30, 50, 100, 200, 300, 400, 500, 600, 700, 800]
    # grid_loss_dict = {}
    # grid_loss_traditional_dict = {}
    # for i in range(len(iter_list)):
    #     dict_key = 'key' + str(iter_list[i])
    #     grid_loss_dict[dict_key] = []
    #     grid_loss_traditional_dict[dict_key] = []

    # result_batch= []
    for i in range(len(iter_list)):

        start_time = time.time()
        ntg_param_opencv_batch = estimate_aff_param_iterator(
            source_image_batch,
            target_image_batch,
            theta_opencv,
            use_cuda=use_cuda,
            itermax=iter_list[i])
        elpased1 = calculate_diff_time(start_time)

        start_time = time.time()
        ntg_param_opencv_batch_traditional = estimate_aff_param_iterator(
            source_image_batch,
            target_image_batch,
            None,
            use_cuda=use_cuda,
            itermax=iter_list[i])
        elpased2 = calculate_diff_time(start_time)
        # print('使用ntg方法',str(len(source_image_batch))+'对图片用时:','有初值:',str(elpased1),'无初值:',str(elpased2))

        ntg_param_pytorch_batch = param2theta(ntg_param_opencv_batch,
                                              240,
                                              240,
                                              use_cuda=use_cuda)
        ntg_param_pytorch_batch_traditional = param2theta(
            ntg_param_opencv_batch_traditional, 240, 240, use_cuda=use_cuda)

        # ntg_image_warped_batch = affine_transform_pytorch(source_image_batch, ntg_param_pytorch_batch)
        # ntg_image_warped_triditional_batch = affine_transform_pytorch(source_image_batch, ntg_param_pytorch_batch_traditional)
        # 只绘制最后的结果
        # if i == len(iter_list)-1:
        #     result_batch.append(ntg_image_warped_triditional_batch)
        #     result_batch.append(ntg_image_warped_batch)

        #print(str(iter_list[i])+''+str(grid_loss.compute_grid_loss(ntg_param_opencv_batch,theta_GT_batch)))
        # grid_loss_batch.append(grid_loss.compute_grid_loss(ntg_param_pytorch_batch,theta_GT_batch).numpy())
        # grid_loss_triditional_batch.append(grid_loss.compute_grid_loss(ntg_param_pytorch_batch_traditional,theta_GT_batch).numpy())

        dict_key = 'key' + str(iter_list[i])
        grid_loss_dict[dict_key].append(
            grid_loss.compute_grid_loss(ntg_param_pytorch_batch,
                                        theta_GT_batch).detach().cpu().numpy())
        grid_loss_traditional_dict[dict_key].append(
            grid_loss.compute_grid_loss(ntg_param_pytorch_batch_traditional,
                                        theta_GT_batch).detach().cpu().numpy())
コード例 #9
0
def register_images(source_image_path, target_image_path, use_cuda=True):

    env_name = 'compare_ntg_realize'
    vis = VisdomHelper(env_name)

    # 创建模型
    ntg_model = CNNRegistration(single_channel=True, use_cuda=use_cuda)

    print("Loading trained model weights")
    print("ntg_checkpoint_path:", ntg_checkpoint_path)

    # 把所有的张量加载到CPU中     GPU ==> CPU
    ntg_checkpoint = torch.load(ntg_checkpoint_path,
                                map_location=lambda storage, loc: storage)
    ntg_checkpoint['state_dict'] = OrderedDict([
        (k.replace('vgg', 'mo del'), v)
        for k, v in ntg_checkpoint['state_dict'].items()
    ])
    ntg_model.load_state_dict(ntg_checkpoint['state_dict'])

    source_image_raw = io.imread(source_image_path)

    target_image_raw = io.imread(target_image_path)

    source_image = source_image_raw
    target_image = target_image_raw

    source_image_var = preprocess_image(source_image,
                                        resize=True,
                                        use_cuda=use_cuda)
    target_image_var = preprocess_image(target_image,
                                        resize=True,
                                        use_cuda=use_cuda)

    # source_image_var = source_image_var[:,0,:,:][:,np.newaxis,:,:]
    # target_image_var = target_image_var[:,0,:,:][:,np.newaxis,:,:]

    batch = {
        'source_image': source_image_var,
        'target_image': target_image_var
    }

    affine_tnf = AffineTnf(use_cuda=use_cuda)

    ntg_model.eval()
    theta = ntg_model(batch)

    ntg_param_batch = estimate_param_batch(source_image_var[:, 0, :, :],
                                           target_image_var[:, 2, :, :], None)
    ntg_image_warped_batch = affine_transform_opencv_2(source_image_var,
                                                       ntg_param_batch)

    theta_opencv = theta2param(theta.view(-1, 2, 3),
                               240,
                               240,
                               use_cuda=use_cuda)
    cnn_ntg_param_batch = estimate_param_batch(source_image_var[:, 0, :, :],
                                               target_image_var[:, 2, :, :],
                                               theta_opencv)

    cnn_image_warped_batch = affine_transform_pytorch(source_image_var, theta)
    cnn_ntg_image_warped_batch = affine_transform_opencv_2(
        source_image_var, cnn_ntg_param_batch)

    cnn_ntg_param_multi_batch = estimate_aff_param_iterator(
        source_image_var[:, 0, :, :].unsqueeze(1),
        target_image_var[:, 0, :, :].unsqueeze(1),
        theta_opencv,
        use_cuda=use_cuda,
        itermax=800)

    cnn_ntg_image_warped_mulit_batch = affine_transform_opencv_2(
        source_image_var,
        cnn_ntg_param_multi_batch.detach().cpu().numpy())
    # cnn_ntg_image_warped_mulit_batch = affine_transform_opencv_2(source_image_var, theta_opencv.detach().cpu().numpy())

    vis.showImageBatch(source_image_var,
                       normailze=True,
                       win='source_image_batch',
                       title='source_image_batch')
    vis.showImageBatch(target_image_var,
                       normailze=True,
                       win='target_image_batch',
                       title='target_image_batch')
    vis.showImageBatch(cnn_image_warped_batch,
                       normailze=True,
                       win='cnn_image_warped_batch',
                       title='cnn_image_warped_batch')
    # 直接使用NTG去做的话不同通道可能直接就失败了
    # vis.showImageBatch(ntg_image_warped_batch, normailze=True, win='warped_image_batch', title='warped_image_batch')
    vis.showImageBatch(cnn_ntg_image_warped_mulit_batch,
                       normailze=True,
                       win='cnn_ntg_param_multi_batch',
                       title='cnn_ntg_param_multi_batch')
コード例 #10
0
def iterDataset(dataloader,
                pair_generator,
                ntg_model,
                cvpr_model,
                vis,
                threshold=10,
                use_cuda=True):
    '''
    迭代数据集中的批次数据,进行处理
    :param dataloader:
    :param pair_generator:
    :param ntg_model:
    :param use_cuda:
    :return:
    '''

    fn_grid_loss = GridLoss(use_cuda=use_cuda)
    grid_loss_cnn_list = []
    grid_loss_cvpr_list = []
    grid_loss_ntg_list = []
    grid_loss_comb_list = []

    ntg_loss_total = 0
    cnn_ntg_loss_total = 0

    # batch {image.shape = }
    for batch_idx, batch in enumerate(dataloader):
        #print("batch_id",batch_idx,'/',len(dataloader))

        # if batch_idx == 15:
        #     break

        if batch_idx % 5 == 0:
            print('test batch: [{}/{} ({:.0f}%)]'.format(
                batch_idx, len(dataloader),
                100. * batch_idx / len(dataloader)))

        pair_batch = pair_generator(
            batch)  # image[batch_size,1,w,h] theta_GT[batch_size,2,3]

        theta_estimate_batch = ntg_model(pair_batch)  # theta [batch_size,6]

        if cvpr_model is not None:
            theta_cvpr_estimate_batch = cvpr_model(pair_batch)

        source_image_batch = pair_batch['source_image']
        target_image_batch = pair_batch['target_image']
        theta_GT_batch = pair_batch['theta_GT']
        image_name = pair_batch['name']

        ## 计算网格点损失配准误差
        # 将pytorch的变换参数转为opencv的变换参数
        theta_opencv = theta2param(theta_estimate_batch.view(-1, 2, 3),
                                   240,
                                   240,
                                   use_cuda=use_cuda)

        #print('使用并行ntg进行估计')
        with torch.no_grad():

            ntg_param_batch = estimate_aff_param_iterator(
                source_image_batch[:, 0, :, :].unsqueeze(1),
                target_image_batch[:, 0, :, :].unsqueeze(1),
                None,
                use_cuda=use_cuda,
                itermax=600)

            cnn_ntg_param_batch = estimate_aff_param_iterator(
                source_image_batch[:, 0, :, :].unsqueeze(1),
                target_image_batch[:, 0, :, :].unsqueeze(1),
                theta_opencv,
                use_cuda=use_cuda,
                itermax=600)
        cnn_ntg_param_pytorch_batch = param2theta(cnn_ntg_param_batch,
                                                  240,
                                                  240,
                                                  use_cuda=use_cuda)
        ntg_param_pytorch_batch = param2theta(ntg_param_batch,
                                              240,
                                              240,
                                              use_cuda=use_cuda)
        cnn_ntg_wraped_image = affine_transform_pytorch(
            source_image_batch, cnn_ntg_param_pytorch_batch)
        ntg_wraped_image = affine_transform_pytorch(source_image_batch,
                                                    ntg_param_pytorch_batch)
        cnn_wraped_image = affine_transform_pytorch(source_image_batch,
                                                    theta_estimate_batch)
        GT_image = affine_transform_pytorch(source_image_batch, theta_GT_batch)

        # loss_cvpr_2018 = fn_grid_loss.compute_grid_loss(theta_cvpr_estimate_batch,theta_GT_batch)
        loss_cnn = fn_grid_loss.compute_grid_loss(
            theta_estimate_batch.detach(), theta_GT_batch)
        loss_ntg = fn_grid_loss.compute_grid_loss(
            ntg_param_pytorch_batch.detach(), theta_GT_batch)
        loss_cnn_ntg = fn_grid_loss.compute_grid_loss(
            cnn_ntg_param_pytorch_batch.detach(), theta_GT_batch)

        vis.showHarvardBatch(source_image_batch,
                             normailze=True,
                             win='source_image_batch',
                             title='source_image_batch')
        vis.showHarvardBatch(target_image_batch,
                             normailze=True,
                             win='target_image_batch',
                             title='target_image_batch')
        vis.showHarvardBatch(ntg_wraped_image,
                             normailze=True,
                             win='ntg_wraped_image',
                             title='ntg_wraped_image')
        vis.showHarvardBatch(cnn_wraped_image,
                             normailze=True,
                             win='cnn_wraped_image',
                             title='cnn_wraped_image')
        vis.showHarvardBatch(cnn_ntg_wraped_image,
                             normailze=True,
                             win='cnn_ntg_wraped_image',
                             title='cnn_ntg_wraped_image')
        vis.showHarvardBatch(GT_image,
                             normailze=True,
                             win='GT_image',
                             title='GT_image')

        grid_loss_ntg_list.append(loss_ntg.detach().cpu())
        grid_loss_cnn_list.append(loss_cnn.detach().cpu())
        grid_loss_comb_list.append(loss_cnn_ntg.detach().cpu())
        # grid_loss_cvpr_list.append(loss_cvpr_2018.detach().cpu())

    print("网格点损失超过阈值的不计入平均值")
    print('ntg网格点损失')
    ntg_group_list = compute_average_grid_loss(grid_loss_ntg_list)
    print('cnn网格点损失')
    cnn_group_list = compute_average_grid_loss(grid_loss_cnn_list)
    print('cnn_ntg网格点损失')
    cnn_ntg_group_list = compute_average_grid_loss(grid_loss_comb_list)
    print('cvpr网格点损失')
    # cvpr_group_list = compute_average_grid_loss(grid_loss_cvpr_list)

    x_list = [i for i in range(10)]

    # vis.drawGridlossBar(x_list,ntg_group_list,cnn_group_list,cnn_ntg_group_list,cvpr_group_list,
    #                       layout_title="Grid_loss_histogram",win='Grid_loss_histogram')

    print("计算CNN平均NTG值", ntg_loss_total / len(dataloader))
    print("计算CNN+NTG平均NTG值", cnn_ntg_loss_total / len(dataloader))

    print("计算正确率")
    print('ntg正确率')
    compute_correct_rate(grid_loss_ntg_list, threshold=threshold)
    print('cnn正确率')
    compute_correct_rate(grid_loss_cnn_list, threshold=threshold)
    print('cnn+ntg 正确率')
    compute_correct_rate(grid_loss_comb_list, threshold=threshold)