def model_train_process(): train_data = read.get_train_data("../data/ratings.txt") user_vec, item_vec = lfm_train(train_data, 50, 0.01, 0.1, 50) recom_result = give_recom_result(user_vec, item_vec, '24') ana_recom_result(train_data, '24', recom_result)
def model_train_process(): train_data = read.get_train_data("../data/ratings.txt") user_vector, item_vector = lfm_train(train_data, 50, 0.01, 0.1, 50) # print (user_vector[20]) # print (item_vector['157']) for userid in user_vector: recom_result = (get_recomend_result(user_vector, item_vector, userid))
def model_train_process(): """test lfm model train""" userId = '24' train_data = read.get_train_data("../data/ratings.csv") user_vec, item_vec = lfm_train(train_data, 10, 0.02, 0.2, 20) recom_result = get_recom_result(user_vec, item_vec, userId) analysis_recom_result(train_data, userId, recom_result)
def model_train_process(): """ test lfm model train :return: """ train_data = read.get_train_data("../data/ratings.txt") user_vec, item_vec = lfm_train(train_data, 50, 0.01, 0.1, 50)
def model_train_process(): """ test lfm model train """ train_data=read.get_train_data("../data/ratings.txt") user_vec, item_vec = lfm_train(train_data, 50, 0.01, 0.1, 50) for userid in user_vec: recom_result = give_recom_result(user_vec, item_vec, userid)
def model_train_process(): train_data = read.get_train_data(read.get_rating_data()) user_vec, article_vec = lfm_train(train_data, 50, 0.01, 0.1, 50) # print(user_vec["1"]) # recom_result = give_recom_result(user_vec, article_vec, '24') # print(recom_result) for user_id in user_vec: threading.Thread(target=give_recom_result, args=(user_vec, article_vec, user_id)).start()
def model_train_process(): """ test lfm model train :return: """ train_data = read.get_train_data("../data/ratings.csv") user_vec, item_vec = lfm_train(train_data, 50, 0.01, 0.1, 50) recom_result = give_recom_result(user_vec, item_vec, '24') ana_recom_result(train_data, '24', recom_result)
def model_train_process(): train_data = read.get_train_data( os.path.dirname( os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) + "\\recommender\\data\\ml-latest-small\\ratings.csv") user_vec, item_vec = lfm_train(train_data, 50, 0.01, 0.1, 50) recom_list = give_recommender(user_vec, item_vec, '24') ana_recom_result(train_data, "24", recom_list)
def model_train_process(): """ test lfm model train """ train_data = read.get_train_data("../data/ratings.dat") user_vec, item_vec = lfm_train(train_data, 50, 0.01, 0.1, 50) recom_result = give_recom_result(user_vec, item_vec, '10') # print(user_vec["1"]) # print(item_vec["2762"]) # print(give_recom_result(user_vec, item_vec, '10')) ana_recom_result(train_data, '10', recom_result)
def model_train_process(): # 训练数据 train_data = get_train_data("../data/ml-latest-small/ratings.csv") user_vec,item_vec = lfm(train_data, F = 50 , alpha = 0.01, beta = 0.1, step = 50) print('user_vec:',len(user_vec),user_vec['1']) print('item_vec:',len(item_vec),item_vec['1']) recom_list = get_recom_result(user_vec, item_vec, userid = '24') # 算法预测效果和用户真实评分记录对比 ana_recom_result(train_data, '24', recom_list)
def model_train_process(): """ test lfm model train :return: """ train_data = read.get_train_data("../data/myratings.txt") user_vec, item_vec = lfm_train(train_data, 50, 0.01, 0.1, 50) recom_result = give_recom_result(user_vec, item_vec, "1") print(recom_result) ana_recom_result(train_data, "1", recom_result)
def model_train_process(): """ test lfm model train """ train_data = read.get_train_data("../data/ratings.dat") user_vec, item_vec = lfm_train(train_data, F=50, alpha=0.01, beta=0.1, step=50) print(user_vec["1"]) print(item_vec["2455"])
def model_train_process(): """ test lfm model train :return: """ # train_data = read.get_train_data("../data/ml-1m/ratings.txt") train_data = read.get_train_data("../data/ratings.txt") user_vec, item_vec = lfm_train(train_data, 50, 0.01, 0.1, 50) recom_list = give_recom_result(user_vec, item_vec, '4') print(recom_list) ana_recom_result(train_data, '4', recom_list) return user_vec, item_vec
def model_train_process(): """ test lfm model train """ train_data = read.get_train_data("../data/split/rat_train.txt") user_vec, item_vec = lfm_train(train_data, 50, 0.01, 0.1, 50) # print(user_vec["1"]) # print(item_vec["50"]) # 基于一个用户的推荐 # recom_result = give_recom_result(user_vec,item_vec,'1') # ana_recom_result(train_data,'1',recom_result) # 基于所有用户的推荐 for userid in user_vec: recom_result = give_recom_result(user_vec, item_vec, userid) # 在此处定义一个数据结构(字典)中存储【userid,[itemid1,itemid2]】 ana_recom_result(train_data, userid, recom_result)
def model_train_process(): train_data=read.get_train_data('../data/ratings.txt') user_vec,item_vec=lfm_train(train_data,50,0.01,0.1,50) for userid in user_vec: recom_result=give_recom_result(user_vec,item_vec,userid) ana_recom_result(train_data,userid,recom_result)