def define_P(gpu_ids=[]): use_gpu = len(gpu_ids) > 0 if use_gpu: assert (torch.cuda.is_available()) netP = Vgg16() util.init_vgg16('./') netP.load_state_dict(torch.load(os.path.join('./', "vgg16.weight"))) for param in netP.parameters(): param.requires_grad = False if use_gpu: netP.cuda() return netP
def define_P(perceptual_model_dir, gpu_ids=[]): use_gpu = len(gpu_ids) > 0 if use_gpu: assert (torch.cuda.is_available()) netP = Vgg16() util.init_vgg16(perceptual_model_dir) netP.load_state_dict( torch.load(os.path.join(perceptual_model_dir, "vgg16.weight"))) for param in netP.parameters(): param.requires_grad = False if use_gpu: netP.cuda(device=gpu_ids[0]) return netP
opt.nThreads = 1 # test code only supports nThreads=1 opt.batchSize = 1 #test code only supports batchSize=1 opt.serial_batches = True # no shuffle opt.lambda_p = 0 # Load vocabulary wrapper. with open(opt.vocab_path, 'rb') as f: vocab = pickle.load(f) opt.vocab = vocab opt.vocab_size = len(vocab) print('load vgg16 models') init_vgg16("vgg_model") vgg_model = Vgg16Part() vgg_model.load_state_dict(torch.load('vgg_model/vgg16.weight')) if torch.cuda.is_available(): vgg_model.cuda() opt.vgg_model = vgg_model data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() model = create_model(opt) visualizer = Visualizer(opt) # create website web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch)) # test