class PreprocClassify: def __init__(self, id_path, con_path, char_type): self.file_io = FileIO() self.encode = CategoryEncode() self.count_rec = CountRecord() self.extract_col = ExtractColumns() self.bin = Binning() self.ss = Scaler() # ファイルオープン self.id = self.file_io.open_file_as_pandas(id_path, char_type) self.con = self.file_io.open_file_as_pandas(con_path, char_type) def make_class_data(self, out_path): '''目的変数を識別し、分析対象ファイルにマージする''' # 売上<=0を削除 #org_df = self.con.drop(self.con[self.con['売上']<=0].index) # 目的変数列を抽出 cust_attr_col_list = [] # 抽出列リストを初期化 cust_attr_tg_list = ['売上'] # 抽出列リストに目的変数列を追加 cust_con_col = self.extract_col.extract(self.con, self.con['顧客ID'], extract_col=cust_attr_tg_list) # 不要な顧客ID列を削除 cust_con_col = cust_con_col.drop(['顧客ID'], axis=1) # 欠損値をゼロうめ cust_con_col = cust_con_col.fillna(0) # 抽出した目的変数列に対して、標準化(平均0, 分散1)処理を行う std_cust_con_col = self.ss.sl_standard_scaler(cust_con_col, data_type='float') # 標準化された目的変数列を平均より上か下かで識別 type_bins = [-1, 0, 1] # 範囲:(-1,1), 0で分割する type_bin_label_list = [0, 1] # 0より小: low, 0より大: high type_col = self.bin.list_divide(std_cust_con_col['売上'], type_bins, type_bin_label_list) # 分類用データの生成 type_df = pd.DataFrame( data=type_col, index=std_cust_con_col.index) # 分類用データ(numpy)をdataframeに変更 type_df.columns = ['クラス'] # dataframeのカラム名を変更 # 分類用データを既存の分析用データにマージ type_df = pd.concat([self.id, type_df], axis=1) # id列とtype_dfを連結 con = pd.merge(self.con, type_df, on='顧客ID', how='left') # 既存dataframeとtype_dfを連結 # 書き出し処理 self.file_io.export_csv_from_pandas(con, out_path)
class ConcatCsvs: def __init__(self, id_path, cust_payment_path, cust_attr_path, target_attr_path, average_attr_path, cust_path, cancel_path, contact_path, cti_path, register_type_path, status_path, stay_time_path, pv_sum_path, session_path, shop_path, pref_path, char_type): self.file_io = FileIO() self.encode = CategoryEncode() self.count_rec = CountRecord() self.extract_col = ExtractColumns() self.bin = Binning() # ファイルオープン self.id = self.file_io.open_file_as_pandas(id_path, char_type) self.cust_payment = self.file_io.open_file_as_pandas( cust_payment_path, char_type) self.cust_attr = self.file_io.open_file_as_pandas( cust_attr_path, char_type) self.target_attr = self.file_io.open_file_as_pandas( target_attr_path, char_type) self.average_attr = self.file_io.open_file_as_pandas( average_attr_path, char_type) self.cust = self.file_io.open_file_as_pandas(cust_path, char_type) self.cancel = self.file_io.open_file_as_pandas(cancel_path, char_type) self.contact = self.file_io.open_file_as_pandas( contact_path, char_type) self.cti = self.file_io.open_file_as_pandas(cti_path, char_type) self.register_type = self.file_io.open_file_as_pandas( register_type_path, char_type) self.status = self.file_io.open_file_as_pandas(status_path, char_type) self.stay_time = self.file_io.open_file_as_pandas( stay_time_path, char_type) self.pv_sum = self.file_io.open_file_as_pandas(pv_sum_path, char_type) self.session = self.file_io.open_file_as_pandas( session_path, char_type) self.shop = self.file_io.open_file_as_pandas(shop_path, char_type) self.pref = self.file_io.open_file_as_pandas(pref_path, char_type) def concat(self, out_path, out_path2): # 特徴量抽出処理 # cust_payment # カテゴリーデータなし # --- check --- #print("--- cust_payment shape ---\n {}\n".format(self.cust_payment.shape)) #print(self.cust_payment.head()) # cust_attr cust_attr_col_list = [] cust_attr_tg_list = [ '指名回数', 'コース受諾回数', '紹介カード受渡回数', '治療送客回数', '院長挨拶回数' ] # カテゴリ列を抽出 cust_attr_category_col = self.extract_col.extract( self.cust_attr, self.cust_attr['顧客ID'], extract_col=cust_attr_tg_list) # 非カテゴリ列を抽出 cust_attr_non_category_col = self.extract_col.exclude( self.cust_attr, exclude_col=cust_attr_tg_list) # 特徴量抽出 org_cust_attr = self.encode.transform_feature( cust_attr_category_col, aggregate_col=cust_attr_tg_list) org_cust_attr = org_cust_attr.fillna(0) #org_cust_attr = org_cust_attr.drop('Unnamed: 0', axis=1) # ラベル付与 for col in cust_attr_tg_list: cust_attr_col_list += self.encode.transform_label( self.cust_attr[col], col) else: cust_attr_col_list += ['顧客ID'] # ラベル設定 org_cust_attr.columns = cust_attr_col_list # 集計処理 feat_cust_attr = self.count_rec.group_sum( org_cust_attr, index_col='顧客ID', aggregate_col=cust_attr_col_list) # カテゴリ列と非カテゴリ列を結合 feat_cust_attr = pd.merge(feat_cust_attr, cust_attr_non_category_col, on='顧客ID', how='left') feat_cust_attr = feat_cust_attr.drop('Unnamed: 0', axis=1) # --- check --- #print("--- feat_cust_attr shape ---\n {}\n".format(feat_cust_attr.shape)) #print(feat_cust_attr.head()) #self.file_io.export_csv_from_pandas(feat_cust_attr, './data/out/mid_feat_cust_attr.csv') # product_attr ''' product_attr_col_list = [] product_attr_tg_list = ['商品コード'] # カテゴリ列を抽出 product_attr_category_col = self.extract_col.extract(self.target_attr, self.target_attr['明細ID'], extract_col=product_attr_tg_list) # 元DSからカテゴリ列を除去することによって、非カテゴリ列を抽出 product_attr_non_category_col = self.extract_col.exclude(self.target_attr, exclude_col=product_attr_tg_list) # 特徴量抽出 org_product_attr = self.encode.transform_feature(product_attr_category_col, aggregate_col=product_attr_tg_list) org_product_attr = org_product_attr.fillna(0) #org_product_attr = org_product_attr.drop('Unnamed: 0', axis=1) #print(org_product_attr) # ラベル付与 for col in product_attr_tg_list: product_attr_col_list += self.encode.transform_label(self.target_attr[col],col) else: product_attr_col_list += ['明細ID'] # ラベル設定 org_product_attr.columns = product_attr_col_list # カテゴリ列と非カテゴリ列を結合 feat_product_attr = pd.merge(org_product_attr, product_attr_non_category_col, on='明細ID',how='left') feat_product_attr = feat_product_attr.drop('Unnamed: 0', axis=1) ''' # product_attr feat_product_attr = self.average_attr # --- check --- #print("--- feat_product_attr shape ---\n {}\n".format(feat_cust_attr.shape)) #print(feat_product_attr.head()) #self.file_io.export_csv_from_pandas(feat_product_attr, './data/out/mid_feat_product_attr.csv') # cust cust_col_list = [] cust_tg_list = ['性別', '携帯TEL', '自宅TEL', '携帯メール', 'PCメール', '職業'] # 外れ値を削除 new_cust = self.cust.drop(self.cust[self.cust['生年月日'].str.contains( '\*', na=True)].index) today = int(pd.to_datetime('today').strftime('%Y%m%d')) new_cust['生年月日'] = pd.to_datetime( new_cust['生年月日']).dt.strftime('%Y%m%d').astype(np.int64) new_cust['生年月日'] = ((today - new_cust['生年月日']) / 10000).astype( np.int64) new_cust['生年月日'] = self.bin.list_divide(new_cust['生年月日'], [0, 10, 20, 30, 40, 50], ['10', '20', '30', '40', '50']) # カテゴリ列を抽出 cust_category_col = self.extract_col.extract(new_cust, new_cust['顧客ID'], extract_col=cust_tg_list) # 非カテゴリ列を抽出 cust_non_category_col = self.extract_col.exclude( new_cust, exclude_col=cust_tg_list) # 特徴量抽出 feat_cust = self.encode.transform_feature(cust_category_col, aggregate_col=cust_tg_list) feat_cust = feat_cust.fillna(0) #feat_cust = feat_cust.drop('Unnamed: 0', axis=1) feat_cust = feat_cust[feat_cust.columns.drop( list(feat_cust.filter(regex='Unnamed:')))] # ラベル付与 for col in cust_tg_list: cust_col_list += self.encode.transform_label(new_cust[col], col) else: cust_col_list += ['顧客ID'] # ラベル設定 feat_cust.columns = cust_col_list # カテゴリ列と非カテゴリ列を結合 feat_cust = pd.merge(feat_cust, cust_non_category_col, on='顧客ID', how='left') #feat_cust = feat_cust.drop('Unnamed: 0', axis=1) # --- check --- #print("--- feat_cust shape ---\n {}\n".format(feat_cust.shape)) #print(feat_cust.head()) #self.file_io.export_csv_from_pandas(feat_cust, './data/out/mid_feat_cust.csv') # shop shop_col_list = [] shop_tg_list = ['担当店舗'] # カテゴリ列を抽出 shop_category_col = self.extract_col.extract(self.shop, self.shop['顧客ID'], extract_col=shop_tg_list) # 特徴量抽出 feat_shop = self.encode.transform_feature(shop_category_col, aggregate_col=shop_tg_list) feat_shop = feat_shop.fillna(0) #feat_shop = feat_cust.drop('Unnamed: 0', axis=1) feat_shop = feat_shop[feat_shop.columns.drop( list(feat_shop.filter(regex='Unnamed:')))] # ラベル付与 for col in shop_tg_list: shop_col_list += self.encode.transform_label(self.shop[col], col) else: shop_col_list += ['顧客ID'] # ラベル設定 feat_shop.columns = shop_col_list #feat_shop = feat_shop.drop('Unnamed: 0', axis=1) # --- check --- #print("--- feat_shop shape ---\n {}\n".format(feat_shop.shape)) #print(feat_shop.head()) #self.file_io.export_csv_from_pandas(feat_shop, './data/out/mid_feat_shop.csv') # pref pref_col_list = [] pref_tg_list = ['町域'] new_pref = self.pref.drop(self.pref[self.pref['町域'] == 0].index) # カテゴリ列を抽出 pref_category_col = self.extract_col.extract(new_pref, new_pref['顧客ID'], extract_col=pref_tg_list) # 特徴量抽出 feat_pref = self.encode.transform_feature(pref_category_col, aggregate_col=pref_tg_list) feat_pref = feat_pref.fillna(0) #feat_pref = feat_cust.drop('Unnamed: 0', axis=1) feat_pref = feat_pref[feat_pref.columns.drop( list(feat_pref.filter(regex='Unnamed:')))] # ラベル付与 for col in pref_tg_list: pref_col_list += self.encode.transform_label(self.pref[col], col) else: pref_col_list += ['顧客ID'] # ラベル設定 feat_pref.columns = pref_col_list #feat_pref = feat_pref.drop('Unnamed: 0', axis=1) # --- check --- #print("--- feat_pref shape ---\n {}\n".format(feat_pref.shape)) #print(feat_pref.head()) #self.file_io.export_csv_from_pandas(feat_pref, './data/out/mid_feat_pref.csv') # cancel # カテゴリーデータなし # --- check --- #print("--- cancel shape ---\n {}\n".format(cancel.shape)) #print(cancel.head()) # contact # カテゴリーデータなし # --- check --- #print("--- contact shape ---\n {}\n".format(contact.shape)) #print(contact.head()) # cti # カテゴリーデータなし # --- check --- #print("--- cti shape ---\n {}\n".format(cti.shape)) #print(cti.head()) # stay_time new_stay_time = self.stay_time new_stay_time['滞在時間'] = self.bin.quant_divide( new_stay_time['滞在時間'], 6, ['1', '2', '3', '4', '5']) bin_stay_time = new_stay_time.drop('Unnamed: 0', axis=1) # pv_sum new_pv_sum = self.pv_sum new_pv_sum['閲覧ページ総数'] = self.bin.quant_divide( new_pv_sum['閲覧ページ総数'], 11, ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']) bin_pv_sum = new_pv_sum.drop('Unnamed: 0', axis=1) # session new_session = self.session new_session['閲覧ページ数/セッション'] = self.bin.quant_divide( new_session['閲覧ページ数/セッション'], 6, ['1', '2', '3', '4', '5']) bin_session = new_session.drop('Unnamed: 0', axis=1) # register_type reg_col_list = [] reg_tg_list = ['登録区分'] # カテゴリ列を抽出 reg_category_col = self.extract_col.extract(self.register_type, self.register_type['顧客ID'], extract_col=reg_tg_list) # 非カテゴリ列を抽出 reg_non_category_col = self.extract_col.exclude( self.register_type, exclude_col=reg_tg_list) # 特徴量抽出 feat_register_type = self.encode.transform_feature( reg_category_col, aggregate_col=reg_tg_list) feat_register_type = feat_register_type.fillna(0) #feat_register_type = feat_register_type.drop('Unnamed: 0', axis=1) # ラベル付与 for col in reg_tg_list: reg_col_list += self.encode.transform_label( self.register_type[col], col) else: reg_col_list += ['顧客ID'] # ラベル設定 feat_register_type.columns = reg_col_list # カテゴリ列と非カテゴリ列を結合 feat_register_type = pd.merge(feat_register_type, reg_non_category_col, on='顧客ID', how='left') feat_register_type = feat_register_type.drop('Unnamed: 0', axis=1) # --- check --- #print("--- feat_register_type shape ---\n {}\n".format(feat_register_type.shape)) #print(feat_register_type.head()) #self.file_io.export_csv_from_pandas(feat_register_type, './data/out/mid_feat_register_type.csv') # status stat_col_list = [] stat_tg_list = ['状況', '指名区分'] # カテゴリ列を抽出 stat_category_col = self.extract_col.extract(self.status, self.status['顧客ID'], extract_col=stat_tg_list) # 非カテゴリ列を抽出 stat_non_category_col = self.extract_col.exclude( self.status, exclude_col=stat_tg_list) # 特徴量抽出 feat_status = self.encode.transform_feature(stat_category_col, aggregate_col=stat_tg_list) feat_status = feat_status.fillna(0) #feat_status = feat_status.drop('Unnamed: 0', axis=1) # ラベル付与 for col in stat_tg_list: stat_col_list += self.encode.transform_label(self.status[col], col) else: stat_col_list += ['顧客ID'] # ラベル設定 feat_status.columns = stat_col_list # カテゴリ列と非カテゴリ列を結合 feat_status = pd.merge(feat_status, stat_non_category_col, on='顧客ID', how='left') feat_status = feat_status.drop('Unnamed: 0', axis=1) #feat_status = feat_status.drop('Unnamed: 0', axis=1) # --- check --- #print("--- feat_status shape ---\n {}\n".format(feat_status.shape)) #print(feat_status.head()) #self.file_io.export_csv_from_pandas(feat_status, './data/out/mid_feat_status.csv') # 結合処理 con_file = pd.merge(feat_product_attr, self.cust_payment, on='顧客ID', how='left') #print("1.1: shape is {}".format(con_file.shape)) con_file = pd.merge(con_file, self.cancel, on='顧客ID', how='left') #print("1.2: shape is {}".format(con_file.shape)) con_file = pd.merge(con_file, self.contact, on='顧客ID', how='left') #print("1.3: shape is {}".format(con_file.shape)) con_file = pd.merge(con_file, self.cti, on='顧客ID', how='left') #print("1.4: shape is {}".format(con_file.shape)) con_file = pd.merge(con_file, bin_stay_time, on='顧客ID', how='left') #print("1.5: shape is {}".format(con_file.shape)) con_file = pd.merge(con_file, bin_pv_sum, on='顧客ID', how='left') #print("1.6: shape is {}".format(con_file.shape)) con_file = pd.merge(con_file, bin_session, on='顧客ID', how='left') #print("1.7: shape is {}".format(con_file.shape)) con_file = pd.merge(con_file, feat_cust_attr, on='顧客ID', how='left') #print("1.8: shape is {}".format(con_file.shape)) con_file = pd.merge(con_file, feat_cust, on='顧客ID', how='left') #print("1.9: shape is {}".format(con_file.shape)) con_file = pd.merge(con_file, feat_register_type, on='顧客ID', how='left') #print("1.10: shape is {}".format(con_file.shape)) #con_file = pd.merge(con_file, feat_status, on='顧客ID',how='left') #print("1.11: shape is {}".format(con_file.shape)) '''con_file = pd.concat([ self.cust_payment, feat_cust_attr, feat_cust, self.cancel, self.contact, self.cti, feat_register_type, feat_status, self.stay_time, self.pv_sum, self.session], axis=1, join_axes=['顧客ID'])''' # --- check --- #print("--- con_file shape ---\n {}\n".format(con_file.shape)) #print(con_file.head()) # 結合処理 con_product_file = pd.merge(self.id, self.cust_payment, on='顧客ID', how='left') con_product_file = pd.merge(con_product_file, feat_product_attr, on='顧客ID', how='left') #print("2.1: shape is {}".format(con_file.shape)) # 重複がある場合、削除 con_file = con_file.drop_duplicates() con_product_file = con_product_file.drop_duplicates() con_product_file = con_product_file.drop(['施術時間', '売上単価', '数量'], axis=1) # 書き出し処理 self.file_io.export_csv_from_pandas(con_file, out_path) self.file_io.export_csv_from_pandas(con_product_file, out_path2) self.file_io.export_csv_from_pandas(feat_shop, './data/out/feat_shop.csv') self.file_io.export_csv_from_pandas(feat_pref, './data/out/feat_pref.csv')