default=1024, help='num of points to use') parser.add_argument('--model_path', type=str, default='', metavar='N', help='Pretrained model path') parser.add_argument('--trans_open', type=bool, default=True, metavar='N', help='enables input translation during voting') args = parser.parse_args() _init_() io = IOStream('checkpoints/' + args.exp_name + '/%s_voting.log' % (args.exp_name)) io.cprint(str(args)) args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: io.cprint('Using GPU') torch.cuda.manual_seed(args.seed) else: io.cprint('Using CPU') test(args, io)
help='evaluate the model') parser.add_argument('--num_points', type=int, default=1024, help='num of points to use') parser.add_argument('--model_path', type=str, default='', metavar='N', help='Pretrained model path') args = parser.parse_args() _init_() if not args.eval: io = IOStream('checkpoints/' + args.exp_name + '/%s_train.log' % (args.exp_name)) else: io = IOStream('checkpoints/' + args.exp_name + '/%s_test.log' % (args.exp_name)) io.cprint(str(args)) args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: io.cprint('Using GPU : ' + str(torch.cuda.current_device()) + ' from ' + str(torch.cuda.device_count()) + ' devices') torch.cuda.manual_seed(args.seed) else: io.cprint('Using CPU') if not args.eval: