コード例 #1
0
class RandomBinary(Initializer):
    _label = INITIALIZER.RANDOM_BINARY_LABEL
    """
    Initialize an array with shape with an random binary
    """
    @MType(seed=OneOfType(int, None))
    def __init__(self, *, seed=None):
        self._rbinary_t = None
        if seed is not None and seed < 0:
            warnings.warn('Seed must be > 0. Reset to None', UserWarning)
            self._seed = None
        self._seed = seed
        self._rng = np.random.RandomState(seed=self._seed)
        super().__init__()

    @MType((int, ), pzero=float, dtype=type(np.dtype), reuse=bool)
    def __call__(self, shape, *, pzero=0.5, dtype=np.int8, reuse=False):
        (row_size, col_size) = shape
        if pzero >= 1 or pzero <= 0:
            warnings.warn(
                'Probability of zeros must be > 0 and < 1. Reset to 0.5.',
                UserWarning)
            pzero = 0.5
        if self._rbinary_t is None or self._rbinary_t.shape != shape or not reuse:
            self._rbinary_t = self._rng.binomial(size=shape, n=1, p=1 - pzero)
        if self._rbinary_t.shape != shape and reuse:
            warnings.warn(
                'Unable to reuse last random binary because the shape is different.',
                UserWarning)
        return self._rbinary_t.copy()

    # ------------------------------------------------------------------------

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return initializer state snapshot as a dict.
        Arguments:
            as_json: set to True to convert and return dict as JSON
            beautify_json: set to True to beautify JSON
        Returns:
            dict
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({
            'seed':
            self._seed,
            'dtype':
            str(self._rbinary_t.dtype) if self._rbinary_t is not None else None
            # 'values': self._rbinary_t.tolist() if self._rbinary_t is not None else None
        })
        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()
コード例 #2
0
class Diagonal(Initializer):
    _label = INITIALIZER.DIAGONAL_LABEL
    """
    Initialize an array with shape with a diagonal
    """
    @MType(OneOfType(int, float))
    def __init__(self, value):
        self._value = value
        self._diagonal_t = None
        super().__init__()

    @MType((int, ), dtype=type(np.dtype))
    def __call__(self, shape, *, dtype=np.float32):
        if self._diagonal_t is None or self._diagonal_t.shape != shape:
            self._diagonal_t = np.zeros(shape=shape, dtype=dtype)
            np.fill_diagonal(self._diagonal_t, self._value, wrap=False)
        return self._diagonal_t.copy()

    # ------------------------------------------------------------------------

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return initializer state snapshot as a dict.
        Arguments:
            as_json: set to True to convert and return dict as JSON
            beautify_json: set to True to beautify JSON
        Returns:
            dict
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({
            'dtype':
            str(self._diagonal_t.dtype)
            if self._diagonal_t is not None else None,
            'value':
            self._value
        })
        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()
コード例 #3
0
class SigmoidCrossentropyLoss(Objective):
    _label = OBJECTIVE.SIGMOID_CROSSENTROPY_LOSS
    """
    Objective using sigmoid (binary)crossentropyfor loss function.
    Arguments:
        size: objective size
        name: objective name
        metric: loss and accuracy metrics
    """
    @MType(size=int,
           name=str,
           metric=(str,))
    def __init__(self, *,
                 size=1,
                 name='',
                 metric=('loss', 'accuracy')):
        super().__init__(size=size, name=name)
        self.reconfig(metric=metric)

    # ------------------------------------------------------------------------

    @MType(shape=OneOfType((int,), None),
           metric=OneOfType((str,), None))
    def reconfig(self, *,
                 shape=None,
                 metric=None):
        """
        Reconfig objective
        Arguments:
            shape: objective layer shape
            metric: loss metric
        """
        if metric is not None:
            if 'loss' in metric or ('accuracy' or 'acc'):
                if 'loss' in metric:
                    self._evaluation['metric']['loss'] = 0
                if ('accuracy' or 'acc') in metric:
                    self._evaluation['metric']['accuracy'] = 0
                if ('recall' or 'rc') in metric:
                    self._evaluation['metric']['recall'] = 0
                if ('precision' or 'prec') in metric:
                    self._evaluation['metric']['precision'] = 0
                if ('f1_score' or 'f1') in metric:
                    self._evaluation['metric']['f1_score'] = 0
            else:
                raise TypeError(f'Unknown metric {metric} for objective {self.name}.')
        if shape is not None:
            super().reconfig(shape=shape)
        self.reset()

    @MType(dict, np.ndarray, residue=dict)
    @MShape(axis=1)
    def forward(self, stage, a_t, *, residue={}):
        """
        Do forward pass method.
        Arguments:
            stage: forward stage
            a_t: post-nonlinearity (a) tensor
            residue:
        Returns:
            layer
        """
        sigmoid_of_a_t = np.exp(-np.logaddexp(0, -a_t + 1e-12))
        return super().forward(stage, sigmoid_of_a_t, residue=residue)

    @MType(np.ndarray, np.ndarray, dict)
    def compute_loss(self, y_t, y_prime_t, *, residue={}):
        """
        Compute the loss.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            residue:
        Returns:
            tuple
        """
        y_prime_t = y_prime_t.astype(np.float32)
        ly_t = -(y_prime_t * np.log(y_t + 1e-12) + (1 - y_prime_t) * np.log((1 - y_t) + 1e-12))

        return (ly_t, residue)

    @MType(np.ndarray, np.ndarray, dict)
    def compute_loss_grad(self, y_t, y_prime_t, *, residue={}):
        """
        Compute the loss gradient tensor for gradient descent update.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            residue:
        Returns:
            tuple
        """
        ey_t = y_t - y_prime_t
        eyg_t = ey_t

        return (eyg_t, residue)

    @MType(np.ndarray, np.ndarray, np.ndarray, dict)
    def compute_evaluation_metric(self, y_t, y_prime_t, ly_t, evaluation_metric):
        """
        Compute the evaluation metric.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            ly_t: loss tensor
        Returns:
            metric
        """
        if 'loss' in evaluation_metric:
            evaluation_metric['loss'] += ly_t.mean()
        if 'accuracy' in evaluation_metric:
            evaluation_metric['accuracy'] += np.equal(y_prime_t, y_t.round()).astype(np.int8).mean()
        if 'recall' in evaluation_metric or 'precision' in evaluation_metric or 'f1_score' in evaluation_metric:
            y_t = np.round(y_t)
            true_pos = np.sum(np.multiply(y_t, y_prime_t), axis=0).astype(np.float)
            # true_neg = np.sum(np.multiply((1 - y_t), (1 - y_prime_t)), axis=0).astype(np.float)
            false_pos = np.sum(np.multiply(y_t, (1 - y_prime_t)), axis=0).astype(np.float)
            false_neg = np.sum(np.multiply((1 - y_t), y_prime_t), axis=0).astype(np.float)
            recall = true_pos / (true_pos + false_neg + 1e-12)
            precision = true_pos / (true_pos + false_pos + 1e-12)
            if 'recall' in evaluation_metric:
                evaluation_metric['recall'] = recall.mean()
            if 'precision' in evaluation_metric:
                evaluation_metric['precision'] = precision.mean()
            if 'f1_score' in evaluation_metric:
                evaluation_metric['f1_score'] = (2 * np.multiply(precision, recall) / (precision + recall + 1e-12)).mean()
        return evaluation_metric
コード例 #4
0
class AlgebraicLoss(Objective):
    _label = OBJECTIVE.ALGEBRAIC_LOSS_LABEL
    """
    Arguments:
        size: objective size
        name: objective name
        metric: loss metric
    """
    @MType(size=int,
           name=str,
           metric=(str,))
    def __init__(self, *,
                 size=1,
                 name='',
                 metric=('loss',)):
        self._cache = None
        super().__init__(size=size, name=name)
        self.reconfig(metric=metric)

    # ------------------------------------------------------------------------

    @MType(shape=OneOfType((int,), None),
           metric=OneOfType((str,), None))
    def reconfig(self, *,
                 shape=None,
                 metric=None):
        """
        Reconfig objective
        Arguments:
            shape: objective layer shape
            metric: loss metric
        """
        if metric is not None:
            if 'loss' in metric or ('accuracy' or 'acc') in metric:
                if 'loss' in metric:
                    self._evaluation['metric']['loss'] = 0
                if ('accuracy' or 'acc') in metric or \
                   ('recall' or 'rc') in metric or \
                   ('precision' or 'prec') in metric or \
                   ('f1_score' or 'f1') in metric:
                    warnings.warn(f'Algebraic loss objective only have loss metric. Ignoring metrics {metric}', UserWarning)
            else:
                raise TypeError(f'Unknown metric {metric} for objective {self.name}.')
        if shape is not None:
            super().reconfig(shape=shape)
        self.reset()

    @MType(np.ndarray, np.ndarray, dict)
    def compute_loss(self, y_t, y_prime_t, *, residue={}):
        """
        Compute the loss.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            residue:
        Returns:
            tuple
        """
        ey_t = y_t - y_prime_t
        sqr_of_ey_t = np.square(ey_t)
        inv_of_ey_t = 1 / (1 + sqr_of_ey_t)
        inv_sqrt_of_ey_t = np.sqrt(inv_of_ey_t)
        ly_t = np.multiply(sqr_of_ey_t, inv_sqrt_of_ey_t)
        self._cache = (sqr_of_ey_t, inv_of_ey_t, inv_sqrt_of_ey_t)

        return (ly_t, residue)

    @MType(np.ndarray, np.ndarray, dict)
    def compute_loss_grad(self, y_t, y_prime_t, *, residue={}):
        """
        Compute the loss gradient tensor for gradient descent update.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            residue:
        Returns:
            tuple
        """
        ey_t = y_t - y_prime_t
        (sqr_of_ey_t, inv_of_ey_t, inv_sqrt_of_ey_t) = self._cache
        eyg_t = np.multiply(2 * ey_t + np.multiply(ey_t, sqr_of_ey_t), np.multiply(inv_of_ey_t, inv_sqrt_of_ey_t))

        return (eyg_t, residue)

    @MType(np.ndarray, np.ndarray, np.ndarray, dict)
    def compute_evaluation_metric(self, y_t, y_prime_t, ly_t, evaluation_metric):
        """
        Compute the evaluation metric.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            ly_t: loss tensor
        Returns:
            metric
        """
        if 'loss' in evaluation_metric:
            evaluation_metric['loss'] += ly_t.mean()

        return evaluation_metric
コード例 #5
0
class Objective(Layer):
    _label = OBJECTIVE.LABEL
    _arrangement = OBJECTIVE.ARRANGEMENT
    """
    Abtraction of a base objective layer. Manages objective loss.
    Arguments:
        size: objective size
        name: objective name
        metric: loss metric
    """
    @MType(size=int,
           name=str,
           metric=(str,))
    def __init__(self, *,
                 size=1,
                 name='',
                 metric=('loss',)):
        self._y_t = None
        self._y_prime_t = None
        self._evaluation = {
            'count': 0,
            'metric': {}
        }
        self._residue = {}

        self._monitor = None

        super().__init__(shape=(1, size), name=name)
        self.reconfig(metric=metric)

    def __str__(self):
        return super().__str__() + '_' + OBJECTIVE.LABEL

    # ------------------------------------------------------------------------

    @property
    def inputs(self):
        """
        Get objective forward pass input tensor.
        Returns:
            tensor
        """
        if self.has_prev:
            return self.prev.outputs
        else:
            return None

    @property
    def outputs(self):
        """
        Get objective forward pass output tensor
        Returns:
            tensor
        """
        if self._y_t is not None:
            return self._y_t.copy()
        else:
            return None

    @property
    def evaluation_metric(self):
        """
        Get objective evaluation metric
        """
        evaluation_count = self._evaluation['count']
        evaluation_metric = copy.deepcopy(self._evaluation['metric'])

        if evaluation_count > 1:
            for key in evaluation_metric.keys():
                evaluation_metric[key] /= evaluation_count
        return evaluation_metric

    def unassign_hooks(self):
        """
        Unassign all callback functions
        """
        self._monitor = None

    @MType(monitor=OneOfType(callable, None))
    def assign_hook(self, *,
                    monitor=None):
        """
        Assign callback functions
        Arguments:
            monitor: callback function to do probing during forward/backward pass
        """
        if monitor is not None:
            self._monitor = monitor

    def reset(self):
        """
        Reset internal states.
        """
        self._y_t = None
        self._y_prime_t = None

        self._residue = {}
        self._evaluation['count'] = 0
        for key in self._evaluation['metric'].keys():
            self._evaluation['metric'][key] = 0

    @MType(shape=OneOfType((int,), None),
           metric=OneOfType((str,), None))
    def reconfig(self, *,
                 shape=None,
                 metric=None):
        """
        Reconfig objective
        Arguments:
            shape: objective layer shape
            metric: loss metric
        """
        if metric is not None:
            if 'loss' in metric:
                self._evaluation['metric']['loss'] = 0
            else:
                raise TypeError(f'Unknown metric {metric} for objective {self.name}.')
        if shape is not None:
            super().reconfig(shape=shape)
        self.reset()

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return objective as a snapshot dict data
        Arguments:
            as_json:
            beautify_json:
        Returns:
            snapshot
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({
            'base_label': Objective.label + '_' + snapshot['base_label'],
            'metric': tuple(self._evaluation['metric'].keys())
        })

        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()

    @MType(dict, np.ndarray, residue=dict)
    @MShape(axis=1)
    def forward(self, stage, a_t, *, residue={}):
        """
        Do forward pass method.
        Arguments:
            stage: forward stage
            a_t: post-nonlinearity (a) tensor
            residue:
        Returns:
            layer
        """
        self._y_t = a_t  # a_t.copy()
        self._residue = residue

        if self._monitor is not None:
            report = {
                'pass': '******',
                'stage': stage,
                'inputs': self.inputs,
                'outputs': self.outputs,
                'residue': residue
            }
            self._monitor(report)

        if self.has_next:
            warnings.warn(f'Objective {self.name} layer must be the last in connection. There should be no connection to next layer.', UserWarning)
        return self

    @MType(np.ndarray)
    @MShape(axis=1)
    def evaluate(self, y_prime_t):
        """
        Get evaluation metric given the expected truth.
        Arguments:
            y_prime_t: expected output (y) tensor
        Returns:
            self
        """
        self._evaluation['count'] += 1
        self._y_prime_t = y_prime_t  # y_prime_t.copy()
        evaluation_metric = self._evaluation['metric']

        (ly_t, residue) = self.compute_loss(self._y_t, self._y_prime_t, residue=self._residue)
        metric = self.compute_evaluation_metric(self._y_t, self._y_prime_t, ly_t, evaluation_metric)

        self._evaluation['metric'] = metric
        self._residue = residue

        return self

    @MType(dict)
    def backward(self, stage):
        """
        Do backward pass by passing the loss gradient tensor back to the prev link.
        Arguments:
            stage: backward stage
        Returns:
            layer
        """
        if self._y_t is None:
            warnings.warn(f'Objective {self.name} cannot do backward pass. Need to run forward pass first.', UserWarning)
            return self
        elif self._y_prime_t is None:
            warnings.warn(f'Objective {self.name} cannot do backward pass. Need to run evaluation first.', UserWarning)
            return self
        else:
            hparam = stage['hparam']
            batch_size = hparam['batch_size']

            (eyg_t, residue) = self.compute_loss_grad(self._y_t, self._y_prime_t, residue=self._residue)
            eyg_t = eyg_t / batch_size if batch_size > 1 else eyg_t

            if self._monitor is not None:
                report = {
                    'pass': '******',
                    'stage': stage,
                    'error': self._ey_t,
                    'grad': {
                        'error': eyg_t
                    },
                    'evaluation': self._evaluation,
                    'residue': residue
                }
                self._monitor(report)

            if self.has_prev:
                return self.prev.backward(stage, eyg_t, residue=residue)
            else:
                warnings.warn(f'Objective {self.name} connection is incomplete. Missing connection to previous layer.', UserWarning)
                return self

    @abc.abstractmethod
    def compute_evaluation_metric(self):
        """
        Compute the evaluation metric.
        """
        pass

    @abc.abstractmethod
    def compute_loss(self):
        """
        Compute the loss tensor. Not implemented
        """
        pass

    @abc.abstractmethod
    def compute_loss_grad(self):
        """
        Compute the loss gradient tensor for backpropagation. Not implemented
        """
        pass
コード例 #6
0
class LogCoshLoss(Objective):
    _label = OBJECTIVE.LOG_COSH_LOSS_LABEL
    """
    Objective using log-cosh loss for loss functionself.
    `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and
    to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly
    like the l2 loss, but will not be so strongly affected by the
    occasional wildly incorrect prediction.
    """

    # ------------------------------------------------------------------------

    @MType(shape=OneOfType((int,), None),
           metric=OneOfType((str,), None))
    def reconfig(self, *,
                 shape=None,
                 metric=None):
        """
        Reconfig objective
        Arguments:
            shape: objective layer shape
            metric: loss metric
        """
        if metric is not None:
            if 'loss' in metric or ('accuracy' or 'acc') in metric:
                if 'loss' in metric:
                    self._evaluation['metric']['loss'] = 0
                if ('accuracy' or 'acc') in metric or \
                   ('recall' or 'rc') in metric or \
                   ('precision' or 'prec') in metric or \
                   ('f1_score' or 'f1') in metric:
                    warnings.warn(f'Log-cosh loss objective only have loss metric. Ignoring metrics {metric}', UserWarning)
            else:
                raise TypeError(f'Unknown metric {metric} for objective {self.name}.')
        if shape is not None:
            super().reconfig(shape=shape)
        self.reset()

    @MType(np.ndarray, np.ndarray, dict)
    def compute_loss(self, y_t, y_prime_t, *, residue={}):
        """
        Compute the loss.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            residue:
        Returns:
            tuple
        """
        ey_t = y_t - y_prime_t
        ly_t = np.log(np.cosh(ey_t) + 1e-12)

        return (ly_t, residue)

    @MType(np.ndarray, np.ndarray, dict)
    def compute_loss_grad(self, y_t, y_prime_t, *, residue={}):
        """
        Compute the loss gradient tensor for gradient descent update.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            residue:
        Returns:
            tuple
        """
        ey_t = y_t - y_prime_t
        eyg_t = np.tanh(ey_t)

        return (eyg_t, residue)

    @MType(np.ndarray, np.ndarray, np.ndarray, dict)
    def compute_evaluation_metric(self, y_t, y_prime_t, ly_t, evaluation_metric):
        """
        Compute the evaluation metric.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            ly_t: loss tensor
        Returns:
            metric
        """
        if 'loss' in evaluation_metric:
            evaluation_metric['loss'] += ly_t.mean()

        return evaluation_metric
コード例 #7
0
class FeedForward(object, metaclass=FeedForward):
    _label = FEED_FORWARD.LABEL
    """
    A feed forward class.
    Arguments:
        name:
    """
    @MType(name=str)
    def __init__(self, *, name=''):
        self._name = name
        self._sequencer = None
        self._hparam = {
            'eta': OPTIMIZER.DEFAULT_ETA,
            'eta_decay': OPTIMIZER.DEFAULT_ETA_DECAY,
            'beta_decay1': OPTIMIZER.DEFAULT_BETA_DECAY1,
            'beta_decay2': OPTIMIZER.DEFAULT_BETA_DECAY2,
            'momentum': OPTIMIZER.DEFAULT_MOMENTUM,
            'l1_lambda': REGULARIZER.DEFAULT_L1_LAMBDA,
            'l2_lambda': REGULARIZER.DEFAULT_L2_LAMBDA
        }
        self._setup_completed = False
        self._eta_scheduler = None
        self._monitor = None
        self._checkpoint = None

    def __str__(self):
        if self.name != '':
            return self.name + '_' + self.label
        else:
            return self.label

    # ------------------------------------------------------------------------

    @property
    def label(self):
        """
        Get feed forward label.
        Returns:
            str
        """
        return type(self).label

    @property
    def name(self):
        """
        Get feed forward name.
        Returns:
        """
        return self._name

    @name.setter
    @MType(str)
    def name(self, name):
        """
        Set feed forward name.
        Arguments:
            name: feed forward name
        """
        self._name = name

    @property
    def sequence(self):
        """
        Get feed forward sequence.
        Returns:
        """
        if self.is_valid:
            return self._sequencer.sequence
        else:
            return None

    @property
    def is_valid(self):
        """
        Check if feed forward has a valid sequence.
        Returns:
            bool
        """
        return self._sequencer is not None and self._sequencer.is_valid

    @property
    def is_complete(self):
        """
        Check if feed forward has a valid and complete sequence.
        Returns:
            bool
        """
        return self.is_valid and self._sequencer.is_complete and self._setup_completed

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return feed forward as a snapshot dict data.
        Arguments:
            as_json:
            beautify_json:
        Returns:
            dict
        """
        model_snapshot = {
            'name':
            self.name,
            'label':
            self.label,
            'base_label':
            FeedForward.label,
            'hparam':
            self._hparam,
            'sequencer':
            self._sequencer.snapshot(as_json=False, beautify_json=False)
            if self.is_complete else None
        }
        if as_json:
            if beautify_json:
                return json.dumps(model_snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(model_snapshot)
        else:
            return model_snapshot.copy()

    def unassign_hooks(self):
        """
        Unassign all callback functions.
        """
        self._eta_scheduler = None
        self._monitor = None
        self._checkpoint = None

    @MType(eta_scheduler=OneOfType(callable, None),
           checkpoint=OneOfType(callable, None),
           monitor=OneOfType(callable, None))
    def assign_hook(self,
                    *,
                    eta_scheduler=None,
                    checkpoint=None,
                    monitor=None):
        """
        Assign callback functions.
        Arguments:
            eta_scheduler:
            checkpoint:
            monitor: callback function to retreive and monitor report/summary
        """
        if eta_scheduler is not None:
            self._eta_scheduler = eta_scheduler
        if checkpoint is not None:
            self._checkpoint = checkpoint
        if monitor is not None:
            self._monitor = monitor

    @MType(int)
    def on_epoch_begin(self, epoch):
        """
        Arguments:
            epoch:
        """
        pass

    @MType(int)
    def on_epoch_end(self, epoch):
        """
        Arguments:
            epoch:
        """
        pass

    def on_setup_completed(self):
        """
        """
        pass

    @abc.abstractmethod
    def construct(self):
        """
        """
        pass

    @property
    def summary(self):
        """
        Get feed forward summary.
        Returns:
        """
        nonlinear_gate_count = 0
        linear_gate_count = 0
        link_count = 0
        total_param_count = 0
        link_optim = ''
        layer_label = ''
        layer_shape = ''
        hdr = 'Layer\tIndex\tOptim\tType\t\tShape\t\tParams\n'
        div1 = '====================================================================================\n'
        div2 = '        ----------------------------------------------------------------------------\n'

        summary = f'### Feed forward {self.name} Summary ###\n'
        summary += hdr + div1

        if self.is_valid:
            if self.sequence.head.name != '':
                summary += f'{self.sequence.head.name}:\n'
            for layer in self.sequence.head:
                param_count = 0
                if isinstance(layer, Nonlinear):
                    nonlinear_gate_count += 1
                    param_count += layer.size
                if isinstance(layer, Linear):
                    linear_gate_count += 1
                if isinstance(layer, BatchNorm):
                    param_count += 2 * layer.shape[1]
                if isinstance(layer, Link):
                    link_count += 1
                    param_count += (layer.shape[0] *
                                    layer.shape[1]) + layer.shape[0]

                if isinstance(layer, Link):
                    link_optim = f'{layer.optim.label}'
                    if layer.is_frozen:
                        layer_label = f'{layer.label} (frozen)'
                    else:
                        layer_label = f'{layer.label}'
                elif isinstance(layer, Nonlinear):
                    link_optim = ''
                    layer_label = f'{layer.label}'
                else:
                    link_optim = ''
                    layer_label = f'{layer.label}'

                if isinstance(layer, Link):
                    layer_shape = str(layer.shape)
                else:
                    layer_shape = f'(*, {layer.size})'

                if layer.has_next:
                    summary += div2
                    summary += f'\t{layer.index:<8d}{link_optim:<8s}{layer_label:<16s}{layer_shape:<16s}{param_count:<8d}\n'
                    if layer.next.name != '' and layer.next.name != layer.name and layer.next.has_next:
                        summary += f'{layer.next.name}:\n'
                else:
                    summary += div1
                total_param_count += param_count

        if self.is_complete:
            summary += f'Objective             : {self.sequence.tail.label}\n'
        summary += f'Total number of params: {total_param_count}\n'
        summary += f'Total number of layers: {linear_gate_count + nonlinear_gate_count + link_count}\n'
        summary += f'                        {nonlinear_gate_count} nonlinear gate layers\n'
        summary += f'                        {link_count} link layers\n'
        return summary

    @MType(objective=OneOfType(str, Objective),
           metric=(str, ),
           optim=OneOfType(str, Optimizer, None),
           hparam=OneOfType(dict, None))
    def setup(self,
              *,
              objective='mse',
              metric=('loss', ),
              optim=None,
              hparam=None):
        """
        Setup the objective layer where the loss & loss gradient is calculated.
        Arguments:
            objective: objective layer
            metric:
            optim:
            hparam:
        Returns:
            self
        """
        if self.is_complete:
            warnings.warn(
                f'Feed forward {self.name} sequence is completed and already setup. Setup skipped.',
                UserWarning)
        else:
            if not self.is_valid:
                sequencer = self.construct()
                if not sequencer.is_valid:
                    raise RuntimeError(
                        f'Constructed sequence from sequencer {sequencer.name} is invalid.'
                    )
                self._sequencer = sequencer

            if 'linear' != self.sequence.tail.label:
                warnings.warn(
                    f'Output sequence of sequencer {sequencer.name} is not linear.',
                    UserWarning)

            size = self.sequence.tail.size
            if isinstance(objective, str):
                name = self._sequencer.name + '_' + Objective.label
                objective_label = objective
                if MAELoss.label == objective_label:
                    self.sequence.tail.connect(
                        MAELoss(size=size, name=name, metric=metric)).lock()
                elif MSELoss.label == objective_label:
                    self.sequence.tail.connect(
                        MSELoss(size=size, name=name, metric=metric)).lock()
                elif LogCoshLoss.label == objective_label:
                    self.sequence.tail.connect(
                        LogCoshLoss(size=size, name=name,
                                    metric=metric)).lock()
                elif XTanhLoss.label == objective_label:
                    self.sequence.tail.connect(
                        XTanhLoss(size=size, name=name, metric=metric)).lock()
                elif AlgebraicLoss.label == objective_label:
                    self.sequence.tail.connect(
                        AlgebraicLoss(size=size, name=name,
                                      metric=metric)).lock()
                elif SigmoidCrossentropyLoss.label == objective_label:
                    self.sequence.tail.connect(
                        SigmoidCrossentropyLoss(size=size,
                                                name=name,
                                                metric=metric)).lock()
                elif SoftmaxCrossentropyLoss.label == objective_label:
                    self.sequence.tail.connect(
                        SoftmaxCrossentropyLoss(size=size,
                                                name=name,
                                                metric=metric)).lock()
                else:
                    raise TypeError(
                        f'Unknown objective {objective_label} for objective layer.'
                    )
            else:
                if size != objective.size:
                    objective.reconfig(shape=(1, size))

                if metric is not None and metric != tuple(
                        objective.evaluation_metric.keys()):
                    objective.reconfig(metric=metric)
                    warnings.warn(
                        f'Overiding custom objective layer {objective.name} metric. Using metric {metric}.',
                        UserWarning)

                self.sequence.tail.connect(objective).lock()
                self.sequence.tail.name = self._sequencer.name + objective.name

            self._setup_completed = True

            self.reconfig(optim=optim, hparam=hparam)
            self.on_setup_completed()
        return self

    @MType(optim=OneOfType(str, Optimizer, None), hparam=OneOfType(dict, None))
    def reconfig(self, *, optim=None, hparam=None):
        """
        Arguments:
            optim:
            hparam:
        Returns:
            self
        """
        if not self.is_complete:
            raise RuntimeError(
                f'Feed forward {self.name} sequence is incomplete. Need to complete setup.'
            )

        if hparam is not None:
            if 'eta' in hparam:
                if hparam['eta'] <= 0:
                    warnings.warn(
                        f'Learning rate eta cannot be <= 0. Reset to {OPTIMIZER.DEFAULT_ETA}.',
                        UserWarning)
                    hparam['eta'] = OPTIMIZER.DEFAULT_ETA
            if 'eta_decay' in hparam:
                if hparam['eta_decay'] < 0:
                    warnings.warn(
                        f'Learning rate eta decay cannot be < 0. Reset to {OPTIMIZER.DEFAULT_ETA_DECAY}.',
                        UserWarning)
                    hparam['eta_decay'] = OPTIMIZER.DEFAULT_ETA_DECAY
            if 'beta_decay1' in hparam:
                if hparam['beta_decay1'] < 0:
                    warnings.warn(
                        f'Optimization beta decay cannot be < 0. Reset to {OPTIMIZER.DEFAULT_BETA_DECAY1}.',
                        UserWarning)
                    hparam['beta_decay1'] = OPTIMIZER.DEFAULT_BETA_DECAY1
            if 'beta_decay2' in hparam:
                if hparam['beta_decay2'] < 0:
                    warnings.warn(
                        f'Optimization beta decay cannot be < 0. Reset to {OPTIMIZER.DEFAULT_BETA_DECAY2}.',
                        UserWarning)
                    hparam['beta_decay2'] = OPTIMIZER.DEFAULT_BETA_DECAY1
            if 'momentum' in hparam:
                if hparam['momentum'] < 0:
                    warnings.warn(
                        f'Optimization momentum cannot be < 0. Reset to {OPTIMIZER.DEFAULT_MOMENTUM}.',
                        UserWarning)
                    hparam['momentum'] = OPTIMIZER.DEFAULT_MOMENTUM
            if 'l1_lambda' in hparam:
                if hparam['l1_lambda'] < 0:
                    warnings.warn(
                        f'Regularization lambda cannot be < 0. Reset to {OPTIMIZER.DEFAULT_L1_LAMBDA}.',
                        UserWarning)
                    hparam['l1_lambda'] = OPTIMIZER.DEFAULT_L1_LAMBDA
            if 'l2_lambda' in hparam:
                if hparam['l2_lambda'] < 0:
                    warnings.warn(
                        f'Regularization lambda cannot be < 0. Reset to {OPTIMIZER.DEFAULT_L2_LAMBDA}.',
                        UserWarning)
                    hparam['l2_lambda'] = OPTIMIZER.DEFAULT_L2_LAMBDA
            self._hparam.update(hparam)

        if optim is not None:
            self._sequencer.reconfig_all(optim=optim)

    @MType(int, int)
    def compute_eta(self, epoch, epoch_limit):
        """
        Get current learning rate
        Arguments:
            epoch:
            epoch_limit:
        Returns:
            eta: learning rate
        """
        eta = self._hparam['eta']
        if self._eta_scheduler is not None:
            eta = self._eta_scheduler(epoch, epoch_limit, eta)
            if not isinstance(eta, float) or eta < 0:
                raise TypeError(
                    'Learning rate value must be a positive floating point number.'
                )
        else:
            eta_decay = self._hparam['eta_decay']
            if eta_decay > 0:
                eta *= math.pow(eta_decay, epoch / epoch_limit)
        return eta

    @MType(np.ndarray)
    def predict(self, x_t):
        """
        Do forward prediction with a given input tensor.
        Arguments:
            x_t: input tensor
        Returns:
            y_t: output prediction tensor
        """
        if not self.is_complete:
            raise RuntimeError(
                f'Feed forward {self.name} sequence is incomplete. Need to complete setup.'
            )
        if len(x_t.shape) != 2:
            raise RuntimeError(
                'Input tensor shape size is invalid. Input tensor shape must have a length of 2.'
            )

        (input_sample_size, input_feature_size) = x_t.shape
        if input_feature_size != self.sequence.head.size:
            raise ValueError(
                f'Input tensor feature size does not match the size of input layer of {self.sequence.head.size}.'
            )
        # x_t = x_t.copy()
        stage = {
            'epoch': 0,
            'mode': 'predicting',
            'hparam': copy.deepcopy(self._hparam)
        }
        # tstart_ns = time.process_time_ns()
        tstart_us = time.process_time()
        self.sequence.head.forward(stage, x_t)
        # tend_ns = time.process_time_ns()
        tend_us = time.process_time()
        # elapse_per_epoch_ms = int(round((tend_ns - tstart_ns) * 0.000001))
        elapse_per_epoch_ms = int(round((tend_us - tstart_us) * 1000))

        if self._monitor is not None:
            report = {
                'name': self.name,
                'stage': stage,
                'elapse': {
                    'per_epoch_ms': elapse_per_epoch_ms,
                    'total_ms': elapse_per_epoch_ms,
                }
            }
            self._monitor(report)

        return self.sequence.tail.outputs

    @MType(np.ndarray,
           np.ndarray,
           epoch_limit=int,
           batch_size=int,
           tl_split=float,
           tl_shuffle=bool,
           verbose=bool)
    def learn(self,
              x_t,
              y_prime_t,
              *,
              epoch_limit=FEED_FORWARD.DEFAULT_EPOCH_LIMIT,
              batch_size=1,
              tl_split=0,
              tl_shuffle=False,
              verbose=True):
        """
        Arguments:
            x_t:
            y_prime_t:
            epoch_limit:
            batch_size:
            tl_split:
            tl_shuffle:
            verbose:
        """
        if not self.is_complete:
            raise RuntimeError(
                f'Feed forward {self.name} sequence is incomplete. Need to complete setup.'
            )
        if len(x_t.shape) != 2:
            raise RuntimeError(
                'Input tensor shape size is invalid. Input tensor shape must have a length of 2.'
            )
        elif len(y_prime_t.shape) != 2:
            raise RuntimeError(
                'Expected output tensor shape size is invalid. Output tensor shape must have a length of 2.'
            )

        (input_sample_size, input_feature_size) = x_t.shape
        (expected_output_sample_size,
         expected_output_prediction_size) = y_prime_t.shape
        if input_feature_size != self.sequence.head.size:
            raise ValueError(
                f'Input tensor feature size does not match the size of input layer of {self.sequence.head.size}.'
            )
        if expected_output_prediction_size != self.sequence.tail.size:
            raise ValueError(
                f'Expected output tensor prediction size does not match the size of output layer of {self.sequence.tail.size}.'
            )
        if expected_output_sample_size != input_sample_size:
            raise ValueError(
                'Input and output tensor sample sizes do not matched.')
        if tl_shuffle:
            shuffler = np.random.permutation(input_sample_size)
            x_t = x_t[shuffler]  # .copy()
            y_prime_t = y_prime_t[shuffler]  # .copy()
        # else:
        #     x_t = x_t.copy()
        #     y_prime_t = y_prime_t.copy()

        if tl_split < 0 or tl_split > 0.5:
            tl_split = 0
            warnings.warn(
                'Testing and learning split ratio must be >= 0 and <= 0.5. Reset testing and learning split ratio to 0.',
                UserWarning)

        enable_testing = tl_split > 0

        if enable_testing:
            if input_sample_size == 1:
                learning_sample_size = input_sample_size
                enable_testing = False
                warnings.warn(
                    'Input sample size = 1. Reset testing and learning split ratio to 0.',
                    UserWarning)
            else:
                learning_sample_size = int(input_sample_size * (1 - tl_split))
                learning_sample_size = learning_sample_size - learning_sample_size % batch_size
                testing_sample_size = input_sample_size - learning_sample_size
        else:
            learning_sample_size = input_sample_size

        if batch_size < 1 or batch_size > learning_sample_size:
            batch_size = learning_sample_size
            warnings.warn(
                f'Batch size must be >= 1 and <= learning sample size {learning_sample_size}. Set batch size = learning sample size.',
                UserWarning)

        stop_learning = False
        stage = {'epoch': 0, 'mode': '', 'hparam': copy.deepcopy(self._hparam)}
        stage['hparam']['batch_size'] = batch_size
        elapse_total_ms = 0

        for layer in self.sequence.head:
            if isinstance(layer, Link) or isinstance(layer, BatchNorm):
                layer.optim.reset()

        for epoch in range(epoch_limit):

            self.on_epoch_begin(epoch)

            tstart_us = time.process_time()
            # tstart_ns = time.process_time_ns()

            self.sequence.tail.reset()

            stage['epoch'] = epoch
            stage['mode'] = 'learning'
            stage['hparam']['eta'] = self.compute_eta(epoch, epoch_limit)

            if batch_size == learning_sample_size:
                batched_x_t = x_t[:learning_sample_size]
                batched_y_prime_t = y_prime_t[:learning_sample_size]
                self.sequence.head.forward(
                    stage,
                    batched_x_t).evaluate(batched_y_prime_t).backward(stage)
            else:
                for i in range(learning_sample_size):
                    if (i + batch_size) < learning_sample_size:
                        batched_x_t = x_t[i:i + batch_size]
                        batched_y_prime_t = y_prime_t[i:i + batch_size]
                    # else:
                    #     batched_x_t = x_t[i: learning_sample_size]
                    #     batched_y_prime_t = y_prime_t[i: learning_sample_size]

                    self.sequence.head.forward(stage, batched_x_t).evaluate(
                        batched_y_prime_t).backward(stage)

            learning_evaluation_metric = self.sequence.tail.evaluation_metric

            if enable_testing:
                stage['mode'] = 'learning_and_testing'
                self.sequence.tail.reset()
                self.sequence.head.forward(
                    stage, x_t[learning_sample_size:]).evaluate(
                        y_prime_t[learning_sample_size:])

                testing_evaluation_metric = self.sequence.tail.evaluation_metric

                if self._checkpoint is not None:
                    stop_learning = self._checkpoint(
                        epoch, learning_evaluation_metric,
                        testing_evaluation_metric)
                else:
                    stop_learning = False
            else:
                if self._checkpoint is not None:
                    stop_learning = self._checkpoint(
                        epoch, learning_evaluation_metric, None)
                else:
                    stop_learning = False

            tend_us = time.process_time()
            elapse_per_epoch_ms = int(round((tend_us - tstart_us) * 1000))
            # tend_ns = time.process_time_ns()
            # elapse_per_epoch_ms = int(round((tend_ns - tstart_ns) * 0.000001))
            elapse_total_ms += elapse_per_epoch_ms

            self.on_epoch_end(epoch)

            if self._monitor is not None:
                stage['mode'] = 'learning'
                self.sequence.tail.reset()
                self.sequence.head.forward(stage, x_t[:learning_sample_size])
                snapshot_learning_output_t = self.sequence.tail.outputs
                report = {
                    'name': self.name,
                    'stage': stage,
                    'epoch_limit': epoch_limit,
                    'learning_sample_size': learning_sample_size,
                    'snapshot': {
                        'learning': {
                            'inputs': x_t[:learning_sample_size],
                            'expected_outputs':
                            y_prime_t[:learning_sample_size],
                            'outputs': snapshot_learning_output_t
                        }
                    },
                    'elapse': {
                        'per_epoch_ms': elapse_per_epoch_ms,
                        'total_ms': elapse_total_ms,
                    },
                    'evaluation_metric': {
                        'learning': learning_evaluation_metric
                    }
                }
                if enable_testing:
                    stage['mode'] = 'learning_and_testing'
                    self.sequence.tail.reset()
                    self.sequence.head.forward(stage,
                                               x_t[learning_sample_size:])
                    snapshot_testing_output_t = self.sequence.tail.outputs
                    report['test_sample_size'] = testing_sample_size
                    report['snapshot']['testing'] = {
                        'inputs': x_t[learning_sample_size:],
                        'expected_outputs': y_prime_t[learning_sample_size:],
                        'outputs': snapshot_testing_output_t
                    }
                    report['evaluation_metric'][
                        'testing'] = testing_evaluation_metric
                self._monitor(report)

            if verbose:
                learning_rate = stage['hparam']['eta']
                print(
                    f'Epoch: {epoch + 1}/{epoch_limit} - Elapse/Epoch: {elapse_per_epoch_ms} ms - Elapse: {round(elapse_total_ms * 1e-3)} s',
                    end='\n',
                    flush=True)
                print(f'\tLearning rate: {learning_rate:.9f}',
                      end='\n',
                      flush=True)
                if enable_testing:
                    learning_metric_summary = ''
                    testing_metric_summary = ''
                    for (metric_name,
                         metric_value) in learning_evaluation_metric.items():
                        learning_metric_summary += f'{metric_name}: {metric_value:.9f} '
                    for (metric_name,
                         metric_value) in testing_evaluation_metric.items():
                        testing_metric_summary += f'{metric_name}: {metric_value:.9f} '
                    print(f'\tLearning {learning_metric_summary}',
                          end='\n',
                          flush=True)
                    print(f'\tTesting {testing_metric_summary}',
                          end='\n',
                          flush=True)
                else:
                    learning_metric_summary = ''
                    for (metric_name,
                         metric_value) in learning_evaluation_metric.items():
                        learning_metric_summary += f'{metric_name}: {metric_value:.9f} '
                    print(f'\tLearning {learning_metric_summary}',
                          end='\n',
                          flush=True)
                if epoch == epoch_limit - 1:
                    print('\n')
            if stop_learning:
                break

    @MType(str, save_as=OneOfType(str, None))
    def save_snapshot(self, filepath, *, save_as=None):
        """
        Save model snapshot to file.
        Arguments:
            filepath:
            save_as:
        """
        if not self.is_complete:
            raise RuntimeError(
                f'Feed forward {self.name} sequence is incomplete. Need to complete setup.'
            )
        if save_as is not None and save_as != '':
            filename = os.path.join(filepath, save_as + '.json')
        else:
            if self.name != '':
                filename = os.path.join(filepath, self.name + '.json')
            else:
                filename = os.path.join(filepath, 'untitled.json')

        with open(filename, 'w') as file:
            model_snapshot = self.snapshot(as_json=False, beautify_json=True)
            json.dump(model_snapshot, file, ensure_ascii=False)

    @MType(str, overwrite=bool)
    def load_snapshot(self, filename, *, overwrite=False):
        """
        Load model snapshot from file.
        Arguments:
            filename:
            overwrite:
        Returns:
            self
        """
        if self.is_valid and not overwrite:
            raise RuntimeError(
                f'Feed forward {self.name} sequence is valid. Cannot overwrite sequence.'
            )
        with open(filename, 'r') as file:
            model_snapshot = json.load(file)
            hparam = model_snapshot['hparam']
            sequencer_snapshot = model_snapshot['sequencer']
            self._setup_completed = False
            self._sequencer = Sequencer().load_snapshot(sequencer_snapshot,
                                                        overwrite=overwrite)

            sequence_snapshot = sequencer_snapshot['sequences'][-1]
            objective_label = sequence_snapshot['base_label']
            if Objective.label in objective_label:
                objective = sequence_snapshot['label']
                metric = tuple(sequence_snapshot['metric'])
                self.setup(objective=objective, metric=metric, hparam=hparam)
            self.name = model_snapshot['name']

        return self
コード例 #8
0
class RandomUniform(Initializer):
    _label = INITIALIZER.RANDOM_UNIFORM_LABEL
    """
    Initialize an array with shape with a random uniform between min and max
    """
    @MType(min=float, max=float, seed=OneOfType(int, None))
    def __init__(self,
                 *,
                 min=INITIALIZER.DEFAULT_RANDOM_UNIFORM_MIN,
                 max=INITIALIZER.DEFAULT_RANDOM_UNIFORM_MAX,
                 seed=None):
        self._runiform_t = None
        if min >= max:
            warnings.warn(
                f'Min must be < max. Reset to {INITIALIZER.DEFAULT_RANDOM_UNIFORM_MIN}, {INITIALIZER.DEFAULT_RANDOM_UNIFORM_MAX}.',
                UserWarning)
        self._min = min
        self._max = max
        if seed is not None and seed < 0:
            warnings.warn('Seed must be > 0. Reset to None', UserWarning)
            self._seed = None
        self._seed = seed
        self._rng = np.random.RandomState(seed=self._seed)
        super().__init__()

    @MType((int, ), dtype=type(np.dtype), reuse=bool)
    def __call__(self, shape, *, dtype=np.float32, reuse=False):
        if self._runiform_t is None or self._runiform_t.shape != shape or not reuse:
            self._runiform_t = self._rng.uniform(low=self._min,
                                                 high=self._max,
                                                 size=shape).astype(dtype)
        if self._runiform_t.shape != shape and reuse:
            warnings.warn(
                'Unable to reuse last random uniform because the shape is different.',
                UserWarning)
        return self._runiform_t.copy()

    # ------------------------------------------------------------------------

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return initializer state snapshot as a dict.
        Arguments:
            as_json: set to True to convert and return dict as JSON
            beautify_json: set to True to beautify JSON
        Returns:
            dict
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({
            'seed':
            self._seed,
            'dtype':
            str(self._runiform_t.dtype)
            if self._runiform_t is not None else None,
            'min':
            self._min,
            'max':
            self._max,
            'spread': (self._max - self._min) / 2
            # 'values': self._runiform_t.tolist() if self._runiform_t is not None else None
        })
        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()
コード例 #9
0
class RandomOrthonormal(Initializer):
    _label = INITIALIZER.RANDOM_ORTHONORMAL_LABEL
    """
    Initialize an array with shape with a random orthonormal
    """
    @MType(seed=OneOfType(int, None))
    def __init__(self, *, seed=None):
        self._rorthonormal_m = None
        if seed is not None and seed < 0:
            warnings.warn('Seed must be > 0. Reset to None', UserWarning)
            self._seed = None
        self._seed = seed
        self._rng = np.random.RandomState(seed=self._seed)
        super().__init__()

    @MType((int, ), dtype=type(np.dtype), reuse=bool)
    def __call__(self, shape, *, dtype=np.float32, reuse=False):
        (row_size, col_size) = shape
        if row_size != col_size:
            raise ValueError(
                'RandomOrthonormal initializer requires shape to be square with rows = cols.'
            )
        if self._rorthonormal_m is None or self._rorthonormal_m.shape != shape or not reuse:
            i_m = np.identity(n=row_size, dtype=dtype)
            one_v = np.ones(shape=(row_size, ), dtype=dtype)
            for i in range(1, row_size):
                x_v = self._rng.normal(size=(row_size - i + 1, ))
                one_v[i - 1] = np.sign(x_v[0])
                x_v -= one_v[i - 1] * np.sqrt((np.square(x_v)).sum())
                # householder transformation
                h_m = np.multiply(
                    np.identity(n=(row_size - i + 1), dtype=dtype) - 2,
                    np.outer(x_v, x_v)) / (np.square(x_v)).sum()
                mat = np.identity(n=row_size, dtype=dtype)
                mat[i - 1:, i - 1:] = h_m
                i_m = np.dot(i_m, mat)
                # fix the last sign such that the determinant is 1
            one_v[-1] = math.pow(-1, 1 - (row_size % 2)) * one_v.prod()

            # equivalent to np.dot(np.diag(one_v), i_m)
            i_m = np.multiply(one_v, i_m.transpose()).transpose()

            self._rorthonormal_m = i_m
        if self._rorthonormal_m.shape != shape and reuse:
            warnings.warn(
                'Unable to reuse last random orthonormal because the shape is different.',
                UserWarning)
        return self._rorthonormal_m.copy()

    # ------------------------------------------------------------------------

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return initializer state snapshot as a dict.
        Arguments:
            as_json: set to True to convert and return dict as JSON
            beautify_json: set to True to beautify JSON
        Returns:
            dict
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({
            'seed':
            self._seed,
            'dtype':
            str(self._rorthonormal_m.dtype)
            if self._rorthonormal_m is not None else None
            # 'values': self._rorthonormal_m.tolist() if self._rorthonormal_m is not None else None
        })
        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()
コード例 #10
0
    def create(cls, layer, *, size=None, shape=None, name=''):
        """
        Create a sequencer with layers.
        Arguments:
            size:
            shape:
            layer:
            name:
        Returns:
            callable
        """
        @FType(OneOfType(callable, Sequencer, None))
        def connect(preceded_sequencer):
            """
            Connect new layer to preceded sequencer sequence.
            Arguments:
                preceded_sequencer:
            Returns:
                sequencer
            """
            nonlocal layer
            nonlocal size

            if preceded_sequencer is None:
                preceded_sequencer = cls(name=name)
            elif callable(preceded_sequencer):
                preceded_sequencer = preceded_sequencer(None)

            sequence = None
            if isinstance(layer, str):
                layer_label = layer
                if size is None:
                    if preceded_sequencer.is_valid:
                        prev_layer_size = preceded_sequencer.sequence.tail.size
                        size = prev_layer_size
                        layer.reconfig(shape=(1, size))
                    else:
                        warnings.warn(
                            'Gate layer size is not specified. Using size = 1.',
                            UserWarning)
                        size = 1

                if Linear.label == layer_label:
                    layer = Linear(size=size, name=name)
                elif ReLU.label == layer_label:
                    layer = ReLU(size=size, name=name)
                elif LeakyReLU.label == layer_label:
                    layer = LeakyReLU(size=size, name=name)
                elif ELU.label == layer_label:
                    layer = ELU(size=size, name=name)
                elif SoftPlus.label == layer_label:
                    layer = SoftPlus(size=size, name=name)
                elif Swish.label == layer_label:
                    layer = Swish(size=size, name=name)
                elif Sigmoid.label == layer_label:
                    layer = Sigmoid(size=size, name=name)
                elif Tanh.label == layer_label:
                    layer = Tanh(size=size, name=name)
                elif Algebraic.label == layer_label:
                    layer = Algebraic(size=size, name=name)
                else:
                    raise TypeError(f'Unknown gate layer label {layer_label}.')

                if preceded_sequencer.is_valid:
                    prev_layer_label = preceded_sequencer.sequence.tail.label
                    prev_layer_size = preceded_sequencer.sequence.tail.size
                    shape = (prev_layer_size, size)
                    sequence = Link(
                        shape=shape,
                        name=name,
                        weight_init='random_normal',
                        weight_reg='not_use',
                        bias_init='zeros'
                        if BatchNorm.label != prev_layer_label else 'not_use',
                        optim='sgd').connect(layer)
                else:
                    sequence = layer
            elif isinstance(layer, Gate):
                if size is None:
                    if preceded_sequencer.is_valid:
                        prev_layer_size = preceded_sequencer.sequence.tail.size
                        size = prev_layer_size
                        layer.reconfig(shape=(1, size))
                else:
                    if size != layer.size:
                        layer.reconfig(shape=(1, size))
                if name != '':
                    layer.name = name
                if preceded_sequencer.is_valid:
                    prev_layer_label = preceded_sequencer.sequence.tail.label
                    prev_layer_size = preceded_sequencer.sequence.tail.size
                    shape = (prev_layer_size, size)
                    sequence = Link(
                        shape=shape,
                        name=name,
                        weight_init='random_normal',
                        weight_reg='not_use',
                        bias_init='zeros'
                        if BatchNorm.label != prev_layer_label else 'not_use',
                        optim='sgd').connect(layer)
                else:
                    sequence = layer
            elif isinstance(layer, Socket):
                if not preceded_sequencer.is_valid:
                    raise RuntimeError(
                        f'Socket layer {layer_label} cannot be the first layer in sequence.'
                    )
                if size is None:
                    if preceded_sequencer.is_valid:
                        prev_layer_size = preceded_sequencer.sequence.tail.size
                        size = prev_layer_size
                        layer.reconfig(shape=(1, size))
                else:
                    if size != layer.size:
                        layer.reconfig(shape=(1, size))
                if name != '':
                    layer.name = name
                sequence = layer

            if preceded_sequencer.is_valid:
                preceded_sequencer.sequence.tail.connect(sequence.head)
            else:
                preceded_sequencer._sequence = sequence

            if preceded_sequencer.sequence.is_singular:
                preceded_sequencer._valid_sequence = False
            else:
                if Gate.label in str(preceded_sequencer.sequence.head) and \
                   Gate.label in str(preceded_sequencer.sequence.tail) and \
                   Link.label in str(preceded_sequencer.sequence.tail.prev):
                    preceded_sequencer._valid_sequence = True

            return preceded_sequencer

        return connect
コード例 #11
0
#
# Author Tuan Le ([email protected])
#
# ------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import env
import unittest
from util.validation import (MShape, MType, FType, OneOfType)

# ------------------------------------------------------------------------


@FType(str, b1=int, c1=str, d1=OneOfType((int, ), str))
def test_a(a1, *, b1=0, c1='c', d1=(1, 2)):
    print(a1)
    print(b1)
    print(c1)
    print(d1)


# class Test(object):
#     @property
#     def shape(self):
#         return (3, 4)
#
#     @MType(str, OneOfType(int, str))
#     def test_a(self, a, b):
#         print(a)
コード例 #12
0
class Socket(Layer):
    _label = SOCKET.LABEL
    _arrangement = SOCKET.ARRANGEMENT
    """
    Abtraction of a base socket layer.
    Arguments:
        shape: socket shape
        name: socket name
    """
    @MType(shape=(int, ), name=str)
    def __init__(self, *, shape=(1, 1), name=''):
        self._a_t = None
        self._monitor = None
        super().__init__(shape=shape, name=name)

    def __str__(self):
        return super().__str__() + '_' + SOCKET.LABEL

    # ------------------------------------------------------------------------

    @property
    def inputs(self):
        """
        Get socket forward pass input tensor
        Returns:
        """
        if self.has_prev:
            return self.prev.outputs
        else:
            return None

    @property
    def outputs(self):
        """
        Get socket forward pass output tensor
        """
        if self._a_t is not None:
            return self._a_t.copy()
        else:
            return None

    def reset(self):
        """
        Reset internal evaluation states
        """
        self._a_t = None

    def unassign_hooks(self):
        """
        Unassign all callback functions
        """
        self._monitor = None

    @MType(monitor=OneOfType(callable, None))
    def assign_hook(self, *, monitor=None):
        """
        Assign callback functions
        Arguments:
            monitor: callback function to do probing during forward/backward pass
        """
        if monitor is not None:
            self._monitor = monitor

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return socket as a snapshot dict data
        Arguments:
            as_json:
            beautify_json:
        Returns:
            snapshot
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update(
            {'base_label': Socket.label + '_' + snapshot['base_label']})
        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()

    @MType(dict, np.ndarray, residue=dict)
    @MShape(axis=1, transpose=False)
    def forward(self, stage, a_t, *, residue={}):
        """
        Do forward pass by passing through the input (a) tensor
        Arguments:
            stage: forward stage
            a_t: post-nonlinearity (a) tensor
            residue:
        Returns:
            tail
        """
        (a_t, residue) = self.compute_forward_ops(stage, a_t, residue=residue)
        self._a_t = a_t

        if self._monitor is not None:
            report = {
                'pass': '******',
                'stage': stage,
                'inputs': self.inputs,
                'outputs': self.outputs,
                'residue': residue
            }
            self._monitor(report)

        if self.has_next:
            return self.next.forward(stage, self._a_t, residue=residue)
        else:
            warnings.warn(
                f'Socket {self.name} connection is incomplete. Missing connection to next layer.',
                UserWarning)
            return self

    @MType(dict, np.ndarray, residue=dict)
    @MShape(axis=1, transpose=False)
    def backward(self, stage, eag_t, *, residue={}):
        """
        Do backward backward pass by passing through the error gradient tensor w.r.t. nonlinearity
        Arguments:
            stage: backward stage
            eag_t: gradient error tensor w.r.t. post-nonlinearity (a) tensor
            residue:
        Returns:
            head
        """
        (eag_t, residue) = self.compute_backward_ops(stage,
                                                     eag_t,
                                                     residue=residue)

        if self._monitor is not None:
            report = {
                'pass': '******',
                'stage': stage,
                'grad': {
                    'ea': eag_t
                },
                'residue': residue
            }
            self._monitor(report)

        if self.has_prev:
            return self.prev.backward(stage, eag_t, residue=residue)
        else:
            warnings.warn(
                f'Socket {self.name} connection is incomplete. Missing connection to previous layer.',
                UserWarning)
            return self

    @abc.abstractmethod
    def compute_forward_ops(self):
        """
        Compute the forwarded operation function. Not implemented.
        """
        pass

    @abc.abstractmethod
    def compute_backward_ops(self):
        """
        Compute the backwarded operation function. Not implemented.
        """
        pass
コード例 #13
0
class BatchNorm(Socket):
    _label = SOCKET.BATCH_NORMALIZER_LABEL
    """
    Arguments:
        size: normalizer size
        name: normalizer name
        moving_mean_init:
        moving_variance_init:
        gamma_init:
        beta_init:
        optim:
    """
    @MType(size=int,
           name=str,
           moving_mean_init=OneOfType(str, float, Initializer),
           moving_variance_init=OneOfType(str, float, Initializer),
           gamma_init=OneOfType(str, float, Initializer),
           beta_init=OneOfType(str, float, Initializer),
           optim=OneOfType(str, Optimizer))
    def __init__(self,
                 *,
                 size=1,
                 name='',
                 moving_mean_init='zeros',
                 moving_variance_init='ones',
                 gamma_init='ones',
                 beta_init='zeros',
                 optim='sgdm'):
        self._frozen = False
        self._optim = None

        self._a_hat_t = None
        self._a_offset_t = None

        self._mean_v = None
        self._variance_v = None

        self._moving_mean_init = None
        self._moving_variance_init = None
        self._moving_mean_v = None
        self._moving_variance_v = None

        self._gamma_v = None
        self._beta_v = None
        self._gamma_init = None
        self._beta_init = None

        super().__init__(shape=(1, size), name=name)
        self.reconfig(moving_mean_init=moving_mean_init,
                      moving_variance_init=moving_variance_init,
                      gamma_init=gamma_init,
                      beta_init=beta_init,
                      optim=optim)

    # ------------------------------------------------------------------------

    @property
    def is_frozen(self):
        """
        Check if layer is frozen
        Returns:
            is frozen flag
        """
        return self._frozen

    def freeze(self):
        """
        Freeze layer
        """
        self._frozen = True

    def unfreeze(self):
        """
        Unfreeze layer
        """
        self._frozen = False

    @property
    def optim(self):
        """
        Get normalizer optimizer
        Returns:
            optimizer
        """
        return self._optim

    @property
    def moving_means(self):
        """
        Get normalizer moving mean vector
        Returns:
            moving mean vector
        """
        if self._moving_mean_v is not None:
            return self._moving_mean_v.copy()
        else:
            return None

    @moving_means.setter
    @MType(np.ndarray)
    @MShape(axis=-1)
    def moving_means(self, moving_mean_v):
        """
        Set normalizer moving mean vector
        """
        if self.is_frozen:
            warnings.warn(
                f'Cannot set moving means to a frozen normalizer {self.name}.',
                UserWarning)
        else:
            np.copyto(self._moving_mean_v, moving_mean_v, casting='same_kind')

    @property
    def moving_variances(self):
        """
        Get normalizer moving variance vector
        Returns:
            moving variance vector
        """
        if self._moving_variance_v is not None:
            return self._moving_variance_v.copy()
        else:
            return None

    @moving_variances.setter
    @MType(np.ndarray)
    @MShape(axis=-1)
    def moving_variances(self, moving_variance_v):
        """
        Set normalizer moving variance vector
        """
        if self.is_frozen:
            warnings.warn(
                f'Cannot set moving variances to a frozen normalizer {self.name}.',
                UserWarning)
        else:
            np.copyto(self._moving_variance_v,
                      moving_variance_v,
                      casting='same_kind')

    @property
    def gammas(self):
        """
        Get normalizer gamma vector
        Returns:
            gamma vector
        """
        if self._gamma_v is not None:
            return self._gamma_v.copy()
        else:
            return None

    @gammas.setter
    @MType(np.ndarray)
    @MShape(axis=-1)
    def gammas(self, gamma_v):
        """
        Set normalizer gamma vector
        """
        if self.is_frozen:
            warnings.warn(
                f'Cannot set gammas to a frozen normalizer {self.name}.',
                UserWarning)
        else:
            np.copyto(self._gamma_v, gamma_v, casting='same_kind')

    @property
    def betas(self):
        """
        Get normalizer beta vector
        Returns:
            beta vector
        """
        if self._beta_v is not None:
            return self._beta_v.copy()
        else:
            return None

    @betas.setter
    @MType(np.ndarray)
    @MShape(axis=-1)
    def betas(self, beta_v):
        """
        Set normalizer beta vector
        """
        if self.is_frozen:
            warnings.warn(
                f'Cannot set betas to a frozen normalizer {self.name}.',
                UserWarning)
        else:
            np.copyto(self._beta_v, beta_v, casting='same_kind')

    def unassign_hooks(self):
        """
        Unassign all callback functions
        """
        super().unassign_hooks()

    @MType(monitor=OneOfType(callable, None))
    def assign_hook(self, *, monitor=None):
        """
        Assign callback functions
        Arguments:
            monitor: callback function to do probing during forward/backward pass
        """
        super().assign_hook(monitor=monitor)

    def reset(self):
        """
        Reset params to initial values
        """
        super().reset()
        self._a_hat_t = None
        self._a_offset_t = None

        self._mean_v = None
        self._variance_v = None

        if self._moving_mean_init is not None:
            self._moving_mean_v = self._moving_mean_init(self.shape)
        if self._moving_variance_init is not None:
            self._moving_variance_v = self._moving_variance_init(self.shape)
        if self._gamma_init is not None:
            self._gamma_v = self._gamma_init(self.shape)
        if self._beta_init is not None:
            self._beta_v = self._beta_init(self.shape)

        if self._optim is not None:
            self._optim.reset()

    @MType(shape=OneOfType((int, ), None),
           moving_mean_init=OneOfType(str, float, Initializer, None),
           moving_variance_init=OneOfType(str, float, Initializer, None),
           gamma_init=OneOfType(str, float, Initializer, None),
           beta_init=OneOfType(str, float, Initializer, None),
           optim=OneOfType(str, Optimizer, None))
    def reconfig(self,
                 *,
                 shape=None,
                 moving_mean_init=None,
                 moving_variance_init=None,
                 gamma_init=None,
                 beta_init=None,
                 optim=None):
        """
        Reconfig batch normalizer
        Arguments:
            shape:
            moving_mean_init:
            moving_variance_init:
            gamma_init:
            beta_init:
            optim:
        """
        if moving_mean_init is not None:
            if isinstance(moving_mean_init, str):
                moving_mean_init_label = moving_mean_init
                if self._moving_mean_init is not None and moving_mean_init_label == self._moving_mean_init.label:
                    warnings.warn(
                        'No change made to normalizer gamma. Re-initializing gamma skipped.',
                        UserWarning)
                else:
                    if Zeros.label == moving_mean_init_label:
                        self._moving_mean_init = Zeros()
                    elif Ones.label == moving_mean_init_label:
                        self._moving_mean_init = Ones()
                    elif RandomNormal.label == moving_mean_init_label:
                        self._moving_mean_init = RandomNormal()
                    elif RandomUniform.label == moving_mean_init_label:
                        self._moving_mean_init = RandomUniform()
                    elif GlorotRandomNormal.label == moving_mean_init_label:
                        self._moving_mean_init = GlorotRandomNormal()
                    elif GlorotRandomUniform.label == moving_mean_init_label:
                        self._moving_mean_init = GlorotRandomUniform()
                    else:
                        raise TypeError(
                            f'Unknown moving mean initializer {moving_mean_init_label} for normalizer {self.name}.'
                        )
                    self._moving_mean_v = self._moving_mean_init(self.shape)
            elif isinstance(moving_mean_init, float):
                self._moving_mean_init = Constant(moving_mean_init)
                self._moving_mean_v = self._moving_mean_init(self.shape)
            else:
                if self._moving_mean_init is not None and moving_mean_init.label == self._moving_mean_init.label:
                    warnings.warn(
                        'No change made to normalizer moving mean initializer. Re-initializing moving means skipped.',
                        UserWarning)
                else:
                    self._moving_mean_init = moving_mean_init
                    self._moving_mean_v = self._moving_mean_init(self.shape)
        if moving_variance_init is not None:
            if isinstance(moving_variance_init, str):
                moving_variance_init_label = moving_variance_init
                if self._moving_variance_init is not None and moving_variance_init_label == self._moving_variance_init.label:
                    warnings.warn(
                        'No change made to normalizer gamma. Re-initializing gamma skipped.',
                        UserWarning)
                else:
                    if Zeros.label == moving_variance_init_label:
                        self._moving_variance_init = Zeros()
                    elif Ones.label == moving_variance_init_label:
                        self._moving_variance_init = Ones()
                    elif RandomNormal.label == moving_variance_init_label:
                        self._moving_variance_init = RandomNormal()
                    elif RandomUniform.label == moving_variance_init_label:
                        self._moving_variance_init = RandomUniform()
                    elif GlorotRandomNormal.label == moving_variance_init_label:
                        self._moving_variance_init = GlorotRandomNormal()
                    elif GlorotRandomUniform.label == moving_variance_init_label:
                        self._moving_variance_init = GlorotRandomUniform()
                    else:
                        raise TypeError(
                            f'Unknown moving variance initializer {moving_variance_init_label} for normalizer {self.name}.'
                        )
                    self._moving_variance_v = self._moving_variance_init(
                        self.shape)
            elif isinstance(moving_variance_init, float):
                self._moving_variance_init = Constant(moving_variance_init)
                self._moving_variance_v = self._moving_variance_init(
                    self.shape)
            else:
                if self._moving_variance_init is not None and moving_variance_init.label == self._moving_variance_init.label:
                    warnings.warn(
                        f'No change made to normalizer moving variance initializer. Re-initializing moving variances skipped.',
                        UserWarning)
                else:
                    self._moving_variance_init = moving_variance_init
                    self._moving_variance_v = self._moving_variance_init(
                        self.shape)
        if gamma_init is not None:
            if isinstance(gamma_init, str):
                gamma_init_label = gamma_init
                if self._gamma_init is not None and gamma_init_label == self._gamma_init.label:
                    warnings.warn(
                        f'No change made to normalizer gamma initializer. Re-initializing gammas skipped.',
                        UserWarning)
                else:
                    if Zeros.label == gamma_init_label:
                        self._gamma_init = Zeros()
                    elif Ones.label == gamma_init_label:
                        self._gamma_init = Ones()
                    elif RandomNormal.label == gamma_init_label:
                        self._gamma_init = RandomNormal()
                    elif RandomUniform.label == gamma_init_label:
                        self._gamma_init = RandomUniform()
                    elif GlorotRandomNormal.label == gamma_init_label:
                        self._gamma_init = GlorotRandomNormal()
                    elif GlorotRandomUniform.label == gamma_init_label:
                        self._gamma_init = GlorotRandomUniform()
                    else:
                        raise TypeError(
                            f'Unknown gamma initializer {gamma_init_label} for normalizer {self.name}.'
                        )
                    self._gamma_v = self._gamma_init(self.shape)
            elif isinstance(gamma_init, float):
                self._gamma_init = Constant(gamma_init)
                self._gamma_v = self._gamma_init(self.shape)
            else:
                if self._gamma_init is not None and gamma_init.label == self._gamma_init.label:
                    warnings.warn(
                        'No change made to normalizer gamma initializer. Re-initializing gammas skipped.',
                        UserWarning)
                else:
                    self._gamma_init = gamma_init
                    self._gamma_v = self._gamma_init(self.shape)
        if beta_init is not None:
            if isinstance(beta_init, str):
                beta_init_label = beta_init
                if self._beta_init is not None and beta_init_label == self._beta_init.label:
                    warnings.warn(
                        'No change made to normalizer beta initializer. Re-initializing betas skipped.',
                        UserWarning)
                else:
                    if Zeros.label == beta_init_label:
                        self._beta_init = Zeros()
                    elif Ones.label == beta_init_label:
                        self._beta_init = Ones()
                    elif RandomNormal.label == beta_init_label:
                        self._beta_init = RandomNormal()
                    elif RandomUniform.label == beta_init_label:
                        self._beta_init = RandomUniform()
                    elif GlorotRandomNormal.label == beta_init_label:
                        self._beta_init = GlorotRandomNormal()
                    elif GlorotRandomUniform.label == beta_init_label:
                        self._beta_init = GlorotRandomUniform()
                    else:
                        raise TypeError(
                            f'Unknown beta initializer {beta_init_label} for normalizer {self.name}.'
                        )
                    self._beta_v = self._beta_init(self.shape)
            elif isinstance(beta_init, float):
                self._beta_init = Constant(beta_init)
                self._beta_v = self._beta_init(self.shape)
            else:
                if self._beta_init is not None and beta_init.label == self._beta_init.label:
                    warnings.warn(
                        'No change made to normalizer beta initializer. Re-initializing betas skipped.',
                        UserWarning)
                else:
                    self._beta_init = beta_init
                    self._beta_v = self._beta_init(self.shape)
        if optim is not None:
            if isinstance(optim, str):
                optim_label = optim
                if self._optim is not None and optim_label == self._optim.label:
                    warnings.warn(
                        'No change made to normalizer optimizer. Reconfig normalizer optimization skipped.',
                        UserWarning)
                else:
                    if SGD.label == optim_label:
                        self._optim = SGD()
                    elif SGDM.label == optim_label:
                        self._optim = SGDM()
                    elif RMSprop.label == optim_label:
                        self._optim = RMSprop()
                    elif Adam.label == optim_label:
                        self._optim = Adam()
                    else:
                        raise TypeError(
                            f'Unknown optimizer {optim_label} for normalizer {self.name}.'
                        )
            else:
                if self._optim is not None and optim.label == self._optim.label:
                    warnings.warn(
                        'No change made to normalizer. Reconfig normalizer optimization skipped.',
                        UserWarning)
                else:
                    self._optim = optim
        if shape is not None:
            super().reconfig(shape=shape)
        self.reset()

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return normalizer as a snapshot dict data
        Arguments:
            as_json:
            beautify_json:
        Returns:
            snapshot
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({
            'moving_mean': {
                'dtype': str(self.moving_means.dtype),
                'values': self.moving_means.tolist()
            } if self.moving_means is not None else None,
            'moving_variance': {
                'dtype': str(self.moving_variances.dtype),
                'values': self.moving_variances.tolist()
            } if self.moving_variances is not None else None,
            'gamma': {
                'dtype': str(self.gammas.dtype),
                'values': self.gammas.tolist()
            } if self.gammas is not None else None,
            'beta': {
                'dtype': str(self.betas.dtype),
                'values': self.betas.tolist()
            } if self.betas is not None else None,
            'moving_mean_init':
            self._moving_mean_init.snapshot(as_json=False,
                                            beautify_json=False),
            'moving_variance_init':
            self._moving_variance_init.snapshot(as_json=False,
                                                beautify_json=False),
            'gamma_init':
            self._gamma_init.snapshot(as_json=False, beautify_json=False),
            'beta_init':
            self._beta_init.snapshot(as_json=False, beautify_json=False),
            'optim':
            self._optim.snapshot(as_json=False, beautify_json=False)
        })
        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()

    @MType(dict, np.ndarray, residue=dict)
    @MShape(axis=1)
    def compute_forward_ops(self, stage, a_t, *, residue={}):
        """
        Do a dropout forwarded operation function on the post-nonlinear (a) tensor and residue.
        Arguments:
            stage: forward stage
            a_t: post-nonlinearity (a) tensor
            residue:
        Returns:
            tensor
        """
        mode = stage['mode']
        if mode == 'learning' or mode == 'infering':
            self._mean_v = np.mean(a_t, axis=0)
            self._variance_v = np.mean(np.square(a_t - self._mean_v), axis=0)
            self._a_hat_t = (a_t - self._mean_v) / np.sqrt(self._variance_v +
                                                           1e-12)
            self._a_offset_t = a_t - self._mean_v
            a_t = (self._gamma_v * self._a_hat_t) + self._beta_v

            self._moving_mean_v = SOCKET.DEFAULT_BATCH_NORMALIZER_MOVING_MOMENTUM * self._moving_mean_v + (
                1 -
                SOCKET.DEFAULT_BATCH_NORMALIZER_MOVING_MOMENTUM) * self._mean_v
            self._moving_variance_v = SOCKET.DEFAULT_BATCH_NORMALIZER_MOVING_MOMENTUM * self._moving_variance_v + (
                1 - SOCKET.DEFAULT_BATCH_NORMALIZER_MOVING_MOMENTUM
            ) * self._variance_v
            self._moving_mean_v = self._moving_mean_v.astype(np.float32)
            self._moving_variance_v = self._moving_variance_v.astype(
                np.float32)
        else:
            self._a_hat_t = (a_t - self._moving_mean_v
                             ) / np.sqrt(self._moving_variance_v + 1e-12)
            a_t = (self._gamma_v * self._a_hat_t) + self._beta_v
        return (a_t, residue)

    @MType(dict, np.ndarray, dict, residue=dict)
    @MShape(axis=1)
    def compute_backward_ops(self, stage, eag_t, *, residue={}):
        """
        Do a dropout backwarded operation function on gradient post-nonlinear (a) tensor and residue.
        Arguments:
            stage: backward stage
            eag_t: gradient error tensor w.r.t. post-nonlinearity (a) tensor
            residue:
        Returns:
            tensor
        """
        epoch = stage['epoch']
        mode = stage['mode']
        hparam = stage['hparam']
        batch_size = hparam['batch_size']
        if mode == 'learning' or mode == 'infering':
            gammag_v = np.sum(self._a_offset_t *
                              (self._variance_v + 1e-12)**(-0.5) * eag_t,
                              axis=0)
            betag_v = np.sum(eag_t, axis=0)

            [gamma_delta_v, beta_delta_v
             ] = self._optim.compute_grad_descent_step(epoch,
                                                       [gammag_v, betag_v],
                                                       hparam)
            self._gamma_v -= gamma_delta_v
            self._beta_v -= beta_delta_v

            if batch_size == 1:
                eag_t = self._gamma_v * (
                    eag_t - np.sum(eag_t, axis=0) -
                    (self._a_offset_t *
                     np.sum(eag_t * self._a_offset_t, axis=0)) /
                    (self._variance_v + 1e-12))
                eag_t = eag_t / np.sqrt(self._variance_v + 1e-12)
            else:
                eag_t = self._gamma_v * (
                    batch_size * eag_t - np.sum(eag_t, axis=0) -
                    (self._a_offset_t *
                     np.sum(eag_t * self._a_offset_t, axis=0)) /
                    (self._variance_v + 1e-12))
                eag_t = eag_t / (batch_size *
                                 np.sqrt(self._variance_v + 1e-12))

        return (eag_t, residue)
コード例 #14
0
class Dropout(Socket):
    _label = SOCKET.DROPOUT_LABEL
    """
    A dropout socket class.
    Arguments:
        size:
        name:
        pzero: dropping probability
    """
    @MType(size=int, name=str, pzero=float)
    def __init__(self, *, size=1, name='', pzero=SOCKET.DEFAULT_DROPOUT_PZERO):
        self._pzero = SOCKET.DEFAULT_DROPOUT_PZERO
        self._mask_init = RandomBinary()
        self._mask_t = None
        self._pzero_scheduler = None

        super().__init__(shape=(1, size), name=name)
        self.reconfig(pzero=pzero)

    # ------------------------------------------------------------------------

    def reset(self):
        """
        Reset internal evaluation states
        """
        super().reset()
        self._mask_t = None

    def unassign_hooks(self):
        """
        Unassign all callback functions
        """
        super().unassign_hooks()
        self._pzero_scheduler = None

    @MType(monitor=OneOfType(callable, None),
           pzero_scheduler=OneOfType(callable, None))
    def assign_hook(self, *, monitor=None, pzero_scheduler=None):
        """
        Assign callback functions
        Arguments:
            monitor:
            pzero_scheduler: callback function to schedule the pzero
        """
        super().assign_hook(monitor=monitor)
        if pzero_scheduler is not None:
            self._pzero_scheduler = pzero_scheduler

    @MType(shape=OneOfType((int, ), None), pzero=OneOfType(float, None))
    def reconfig(self, *, shape=None, pzero=None):
        """
        Reconfig dropout.
        Arguments:
            shape:
            pzero:
        """
        if pzero is not None:
            if pzero < 0 or pzero >= 1:
                warnings.warn(
                    f'Dropout probability cannot be < 0 or >= 1. Reset to {SOCKET.DEFAULT_DROPOUT_PZERO}.',
                    UserWarning)
                pzero = SOCKET.DEFAULT_DROPOUT_PZERO
            self._pzero = pzero
        if shape is not None:
            super().reconfig(shape=shape)
        self.reset()

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return dropout as a snapshot dict data
        Arguments:
            as_json -
            beautify_json -
        Returns:
            dict
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({
            'pzero': self._pzero
            # 'mask': {
            #     'dtype': str(self._mask_t.dtype),
            #     'values': self._mask_t.tolist()
            # } if self._mask_t is not None else None,
            # 'mask_init': self._mask_init.snapshot(as_json=False, beautify_json=False),
        })
        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()

    @MType(int)
    def compute_pzero(self, epoch):
        """
        Get current regularization rate.
        Arguments:
            epoch:
        Returns:
            float
        """
        pzero = self._pzero
        if self._pzero_scheduler is not None:
            pzero = self._pzero_scheduler(epoch, self._pzero)
            if not isinstance(pzero, float) or pzero < 0:
                raise TypeError(
                    'Dropout propability value must be a positive floating point number.'
                )
        return pzero

    @MType(dict, np.ndarray, residue=dict)
    @MShape(axis=1)
    def compute_forward_ops(self, stage, a_t, *, residue={}):
        """
        Do a dropout forwarded operation function on the post-nonlinear (a) tensor and residue.
        Arguments:
            stage: forward stage:
            a_t: post-nonlinearity (a) tensor
            residue:
        Returns:
            tensor
        """
        if 'epoch' in stage:
            epoch = stage['epoch']
        else:
            raise ValueError(
                'Input stage is missing the required epoch number.')

        pzero = self.compute_pzero(epoch)
        if pzero > 0:
            self._mask_t = self._mask_init((1, self.size),
                                           pzero=pzero,
                                           dtype=np.int8)
        if self._mask_t is not None:
            a_t = np.multiply(a_t, self._mask_t)
        return (a_t, residue)

    @MType(dict, np.ndarray, residue=dict)
    @MShape(axis=1)
    def compute_backward_ops(self, stage, eag_t, *, residue={}):
        """
        Do a dropout backwarded operation function on gradient post-nonlinear (a) tensor and residue.
        Arguments:
            stage: backward stage
            eag_t: gradient error tensor w.r.t. post-nonlinearity (a) tensor
            residue:
        Returns:
            tensor
        """
        if self._mask_t is not None:
            eag_t = np.multiply(eag_t, self._mask_t)

        return (eag_t, residue)
コード例 #15
0
ファイル: gates.py プロジェクト: tuantle/simple_nn_with_numpy
class Gate(Layer):
    _label = GATE.LABEL
    _arrangement = GATE.ARRANGEMENT
    """
    A base gate layer that applies a linear or nonlinear function on the input (z) tensor to get an output (a) tensor.
    Arguments:
        size: gate size
        name: gate name
    """
    @MType(size=int, name=str)
    def __init__(self, *,
                 size=1,
                 name=''):
        self._z_t = None
        self._a_t = None
        self._monitor = None
        super().__init__(shape=(1, size), name=name)

    def __str__(self):
        return super().__str__() + '_' + GATE.LABEL

    # ------------------------------------------------------------------------

    @property
    def inputs(self):
        """
        Get gate forward pass input (z) tensor.
        Returns:
            tensor
        """
        if self._z_t is not None:
            return self._z_t.copy()
        else:
            return None

    @property
    def outputs(self):
        """
        Get gate forward pass output (a) tensor.
        Returns:
            tensor
        """
        if self._a_t is not None:
            return self._a_t.copy()
        else:
            return None

    def reset(self):
        """
        Reset internal states.
        """
        self._z_t = None
        self._a_t = None

    def unassign_hooks(self):
        """
        Unassign all callback or hook functions.
        """
        self._monitor = None

    @MType(monitor=OneOfType(callable, None))
    def assign_hook(self, *, monitor=None):
        """
        Assign callback or hook functions.
        Arguments:
            monitor: callback function to do probing during forward/backward pass
        """
        if monitor is not None:
            self._monitor = monitor

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return gate as a snapshot dict data
        Arguments:
            as_json:
            beautify_json:
        Returns:
            snapshot
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({
            'base_label': Gate.label + '_' + snapshot['base_label']
        })
        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()
コード例 #16
0
class Sequencer(object, metaclass=Sequencer):
    _label = SEQUENCER.LABEL
    """
    A sequencer class.
    Arguments:
        name:
    """
    @MType(name=str)
    def __init__(self, *, name=''):
        self._name = name
        self._valid_sequence = False
        self._sequence = None
        # self._registry = {}

    def __str__(self):
        if self.name != '':
            return self.name + '_' + self.label
        else:
            return self.label

    # ------------------------------------------------------------------------

    @property
    def label(self):
        """
        Get layer label.
        Returns:
            str
        """
        return type(self).label

    @property
    def name(self):
        """
        Get sequencer name
        Returns:
        """
        return self._name

    @name.setter
    @MType(str)
    def name(self, name):
        """
        Set sequencer name
        Arguments:
            name: sequencer name
        """
        self._name = name

    @property
    def sequence(self):
        """
        Get sequencer sequence
        Returns:
        """
        if self.is_valid:
            return self._sequence
        else:
            return None

    @property
    def is_valid(self):
        """
        Check that sequence is valid
        Returns:
        """
        return self._sequence is not None

    @property
    def is_complete(self):
        """
        Check that sequence is complete
        Returns:
        """
        return self.is_valid and self._valid_sequence

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return sequencer as a snapshot dict data
        Arguments:
            as_json:
            beautify_json:
        Returns:
            dict
        """
        sequencer_snapshot = {
            'name': self.name,
            'label': self.label,
            'base_label': Sequencer.label,
            'sequences': []
        }
        if self.is_complete:
            for layer in self.sequence.head:
                sequencer_snapshot['sequences'].append(
                    layer.snapshot(as_json=False, beautify_json=False))

        if as_json:
            if beautify_json:
                return json.dumps(sequencer_snapshot,
                                  indent=4,
                                  sort_keys=False)
            else:
                return json.dumps(sequencer_snapshot)
        else:
            return sequencer_snapshot.copy()

    @MType(dict, overwrite=bool)
    def load_snapshot(self, sequencer_snapshot, *, overwrite=False):
        """
        Load sequence from file
        Arguments:
            sequencer_snapshot:
            overwrite:
        Returns:
            self
        """
        if self.is_valid and not overwrite:
            raise RuntimeError(
                f'Sequencer {self.name} sequence is valid. Cannot overwrite sequence.'
            )
        sequence = None
        for sequence_snapshot in sequencer_snapshot['sequences'][:-1]:
            layer_label = sequence_snapshot['label']
            name = sequence_snapshot['name']
            shape = tuple(sequence_snapshot['shape'])
            size = shape[1]

            if Linear.label == layer_label:
                layer = Linear(size=size, name=name)
            elif ReLU.label == layer_label:
                layer = ReLU(size=size, name=name)
            elif LeakyReLU.label == layer_label:
                layer = LeakyReLU(size=size, name=name)
            elif ELU.label == layer_label:
                layer = ELU(size=size, name=name)
            elif SoftPlus.label == layer_label:
                layer = SoftPlus(size=size, name=name)
            elif Swish.label == layer_label:
                layer = Swish(size=size, name=name)
            elif Sigmoid.label == layer_label:
                layer = Sigmoid(size=size, name=name)
            elif Tanh.label == layer_label:
                layer = Tanh(size=size, name=name)
            elif Algebraic.label == layer_label:
                layer = Algebraic(size=size, name=name)
            elif Dropout.label == layer_label:
                pzero = sequence_snapshot['pzero']
                layer = Dropout(size=size, name=name, pzero=pzero)
            elif BatchNorm.label == layer_label:
                optim = 'sgdm'
                optim_label = sequence_snapshot['optim']['label']
                if SGD.label == optim_label:
                    optim = SGD()
                elif SGDM.label == optim_label:
                    optim = SGDM()
                elif RMSprop.label == optim_label:
                    optim = RMSprop()
                elif Adam.label == optim_label:
                    optim = Adam()
                else:
                    raise TypeError(
                        f'Unknown optimizer {optim_label} for normalizer {name}.'
                    )

                moving_mean_init = 'zeros'
                moving_mean_init_label = sequence_snapshot['moving_mean_init'][
                    'label']
                if Zeros.label == moving_mean_init_label:
                    moving_mean_init = Zeros()
                elif Ones.label == moving_mean_init_label:
                    moving_mean_init = Ones()
                elif RandomNormal.label == moving_mean_init_label:
                    moving_mean_init = RandomNormal()
                elif RandomUniform.label == moving_mean_init_label:
                    moving_mean_init = RandomUniform()
                elif GlorotRandomNormal.label == moving_mean_init_label:
                    moving_mean_init = GlorotRandomNormal()
                elif GlorotRandomUniform.label == moving_mean_init_label:
                    moving_mean_init = GlorotRandomUniform()
                else:
                    raise TypeError(
                        f'Unknown moving mean initializer {moving_mean_init_label} for normalizer {name}.'
                    )
                moving_variance_init = 'ones'
                moving_variance_init_label = sequence_snapshot[
                    'moving_variance_init']['label']
                if Zeros.label == moving_variance_init_label:
                    moving_variance_init = Zeros()
                elif Ones.label == moving_variance_init_label:
                    moving_variance_init = Ones()
                elif RandomNormal.label == moving_variance_init_label:
                    moving_variance_init = RandomNormal()
                elif RandomUniform.label == moving_variance_init_label:
                    moving_variance_init = RandomUniform()
                elif GlorotRandomNormal.label == moving_variance_init_label:
                    moving_variance_init = GlorotRandomNormal()
                elif GlorotRandomUniform.label == moving_variance_init_label:
                    moving_variance_init = GlorotRandomUniform()
                else:
                    raise TypeError(
                        f'Unknown moving variance initializer {moving_variance_init_label} for normalizer {name}.'
                    )

                gamma_init = 'ones'
                gamma_init_label = sequence_snapshot['gamma_init']['label']
                if Zeros.label == gamma_init_label:
                    gamma_init = Zeros()
                elif Ones.label == gamma_init_label:
                    gamma_init = Ones()
                elif RandomNormal.label == gamma_init_label:
                    gamma_init = RandomNormal()
                elif RandomUniform.label == gamma_init_label:
                    gamma_init = RandomUniform()
                elif GlorotRandomNormal.label == gamma_init_label:
                    gamma_init = GlorotRandomNormal()
                elif GlorotRandomUniform.label == gamma_init_label:
                    gamma_init = GlorotRandomUniform()
                else:
                    raise TypeError(
                        f'Unknown gamma initializer {gamma_init_label} for normalizer {name}.'
                    )
                beta_init = 'zeros'
                beta_init_label = sequence_snapshot['beta_init']['label']
                if Zeros.label == beta_init_label:
                    beta_init = Zeros()
                elif Ones.label == beta_init_label:
                    beta_init = Ones()
                elif RandomNormal.label == beta_init_label:
                    beta_init = RandomNormal()
                elif RandomUniform.label == beta_init_label:
                    beta_init = RandomUniform()
                elif GlorotRandomNormal.label == beta_init_label:
                    beta_init = GlorotRandomNormal()
                elif GlorotRandomUniform.label == beta_init_label:
                    beta_init = GlorotRandomUniform()
                else:
                    raise TypeError(
                        f'Unknown beta initializer {beta_init_label} for normalizer {name}.'
                    )
                layer = BatchNorm(size=size,
                                  name=name,
                                  moving_mean_init=moving_mean_init,
                                  moving_variance_init=moving_variance_init,
                                  gamma_init=gamma_init,
                                  beta_init=beta_init,
                                  optim=optim)
                layer.moving_means = np.array(
                    sequence_snapshot['moving_mean']['values'],
                    dtype=sequence_snapshot['moving_mean']['dtype'])
                layer.moving_variances = np.array(
                    sequence_snapshot['moving_variance']['values'],
                    dtype=sequence_snapshot['moving_variance']['dtype'])
                layer.gammas = np.array(
                    sequence_snapshot['gamma']['values'],
                    dtype=sequence_snapshot['gamma']['dtype'])
                layer.betas = np.array(
                    sequence_snapshot['beta']['values'],
                    dtype=sequence_snapshot['beta']['dtype'])
            elif Link.label == layer_label:
                frozen = sequence_snapshot['frozen']
                weight_init = 'random_normal'
                weight_init_label = sequence_snapshot['weight_init']['label']
                if Zeros.label == weight_init_label:
                    weight_init = Zeros()
                elif Ones.label == weight_init_label:
                    weight_init = Ones()
                elif Identity.label == weight_init_label:
                    weight_init = Identity()
                elif Diagonal.label == weight_init_label:
                    value = sequence_snapshot['weight_init']['value']
                    weight_init = Diagonal(value)
                elif RandomNormal.label == weight_init_label:
                    seed = sequence_snapshot['weight_init']['seed']
                    mean = sequence_snapshot['weight_init']['mean']
                    variance = sequence_snapshot['weight_init']['variance']
                    weight_init = RandomNormal(seed=seed,
                                               mean=mean,
                                               variance=variance)
                elif RandomUniform.label == weight_init_label:
                    seed = sequence_snapshot['weight_init']['seed']
                    min = sequence_snapshot['weight_init']['min']
                    max = sequence_snapshot['weight_init']['max']
                    weight_init = RandomUniform(seed=seed, min=min, max=max)
                elif GlorotRandomNormal.label == weight_init_label:
                    seed = sequence_snapshot['weight_init']['seed']
                    weight_init = GlorotRandomNormal(seed=seed)
                elif GlorotRandomUniform.label == weight_init_label:
                    seed = sequence_snapshot['weight_init']['seed']
                    weight_init = GlorotRandomUniform(seed=seed)
                else:
                    raise TypeError(
                        f'Unknown weight initializer {weight_init_label} for link {name}.'
                    )

                weight_reg = 'not_use'
                if sequence_snapshot['weight_reg'] is not None:
                    weight_reg_label = sequence_snapshot['weight_reg']['label']
                    if L1Lasso.label == weight_reg_label:
                        weight_reg = L1Lasso()
                    elif L2Ridge.label == weight_reg_label:
                        weight_reg = L2Ridge()
                    elif L1L2ElasticNet.label == weight_reg_label:
                        weight_reg = L1L2ElasticNet()
                    else:
                        raise TypeError(
                            f'Unknown weight regularizer {weight_reg_label} for link {name}.'
                        )

                bias_init = 'not_use'
                if BatchNorm.label == sequence.tail.label and bias_init != 'not_use':
                    warnings.warn(
                        f'Link biases is not needed with batch normalization in the previous layer enabled. Link biases initialization skipped.',
                        UserWarning)
                else:
                    if sequence_snapshot['bias_init'] is not None:
                        bias_init_label = sequence_snapshot['bias_init'][
                            'label']
                        if Zeros.label == bias_init_label:
                            bias_init = Zeros()
                        elif Ones.label == bias_init_label:
                            bias_init = Ones()
                        elif Constant.label == bias_init_label:
                            value = sequence_snapshot['bias_init']['value']
                            bias_init = Constant(value)
                        else:
                            raise TypeError(
                                f'Unknown bias initializer {bias_init_label} for link {name}.'
                            )

                optim = 'sgd'
                optim_label = sequence_snapshot['optim']['label']
                if SGD.label == optim_label:
                    optim = SGD()
                elif SGDM.label == optim_label:
                    optim = SGDM()
                elif RMSprop.label == optim_label:
                    optim = RMSprop()
                elif Adam.label == optim_label:
                    optim = Adam()
                else:
                    raise TypeError(
                        f'Unknown optimizer {optim_label} for link {name}.')

                layer = Link(shape=shape,
                             name=name,
                             weight_init=weight_init,
                             weight_reg=weight_reg,
                             bias_init=bias_init,
                             optim=optim)

                layer.weights = np.array(
                    sequence_snapshot['weight']['values'],
                    dtype=sequence_snapshot['weight']['dtype'])
                if sequence_snapshot['bias'] is not None:
                    layer.biases = np.array(
                        sequence_snapshot['bias']['values'],
                        dtype=sequence_snapshot['bias']['dtype'])

                if frozen:
                    layer.freeze()

            if sequence is None:
                sequence = layer
            else:
                sequence.tail.connect(layer)

        self._name = sequencer_snapshot['name']
        self._sequence = sequence
        self._valid_sequence = True

        return self

    @classmethod
    @MType(OneOfType(str, Gate, Socket),
           size=OneOfType(int, None),
           shape=OneOfType((int, ), None),
           name=str)
    def create(cls, layer, *, size=None, shape=None, name=''):
        """
        Create a sequencer with layers.
        Arguments:
            size:
            shape:
            layer:
            name:
        Returns:
            callable
        """
        @FType(OneOfType(callable, Sequencer, None))
        def connect(preceded_sequencer):
            """
            Connect new layer to preceded sequencer sequence.
            Arguments:
                preceded_sequencer:
            Returns:
                sequencer
            """
            nonlocal layer
            nonlocal size

            if preceded_sequencer is None:
                preceded_sequencer = cls(name=name)
            elif callable(preceded_sequencer):
                preceded_sequencer = preceded_sequencer(None)

            sequence = None
            if isinstance(layer, str):
                layer_label = layer
                if size is None:
                    if preceded_sequencer.is_valid:
                        prev_layer_size = preceded_sequencer.sequence.tail.size
                        size = prev_layer_size
                        layer.reconfig(shape=(1, size))
                    else:
                        warnings.warn(
                            'Gate layer size is not specified. Using size = 1.',
                            UserWarning)
                        size = 1

                if Linear.label == layer_label:
                    layer = Linear(size=size, name=name)
                elif ReLU.label == layer_label:
                    layer = ReLU(size=size, name=name)
                elif LeakyReLU.label == layer_label:
                    layer = LeakyReLU(size=size, name=name)
                elif ELU.label == layer_label:
                    layer = ELU(size=size, name=name)
                elif SoftPlus.label == layer_label:
                    layer = SoftPlus(size=size, name=name)
                elif Swish.label == layer_label:
                    layer = Swish(size=size, name=name)
                elif Sigmoid.label == layer_label:
                    layer = Sigmoid(size=size, name=name)
                elif Tanh.label == layer_label:
                    layer = Tanh(size=size, name=name)
                elif Algebraic.label == layer_label:
                    layer = Algebraic(size=size, name=name)
                else:
                    raise TypeError(f'Unknown gate layer label {layer_label}.')

                if preceded_sequencer.is_valid:
                    prev_layer_label = preceded_sequencer.sequence.tail.label
                    prev_layer_size = preceded_sequencer.sequence.tail.size
                    shape = (prev_layer_size, size)
                    sequence = Link(
                        shape=shape,
                        name=name,
                        weight_init='random_normal',
                        weight_reg='not_use',
                        bias_init='zeros'
                        if BatchNorm.label != prev_layer_label else 'not_use',
                        optim='sgd').connect(layer)
                else:
                    sequence = layer
            elif isinstance(layer, Gate):
                if size is None:
                    if preceded_sequencer.is_valid:
                        prev_layer_size = preceded_sequencer.sequence.tail.size
                        size = prev_layer_size
                        layer.reconfig(shape=(1, size))
                else:
                    if size != layer.size:
                        layer.reconfig(shape=(1, size))
                if name != '':
                    layer.name = name
                if preceded_sequencer.is_valid:
                    prev_layer_label = preceded_sequencer.sequence.tail.label
                    prev_layer_size = preceded_sequencer.sequence.tail.size
                    shape = (prev_layer_size, size)
                    sequence = Link(
                        shape=shape,
                        name=name,
                        weight_init='random_normal',
                        weight_reg='not_use',
                        bias_init='zeros'
                        if BatchNorm.label != prev_layer_label else 'not_use',
                        optim='sgd').connect(layer)
                else:
                    sequence = layer
            elif isinstance(layer, Socket):
                if not preceded_sequencer.is_valid:
                    raise RuntimeError(
                        f'Socket layer {layer_label} cannot be the first layer in sequence.'
                    )
                if size is None:
                    if preceded_sequencer.is_valid:
                        prev_layer_size = preceded_sequencer.sequence.tail.size
                        size = prev_layer_size
                        layer.reconfig(shape=(1, size))
                else:
                    if size != layer.size:
                        layer.reconfig(shape=(1, size))
                if name != '':
                    layer.name = name
                sequence = layer

            if preceded_sequencer.is_valid:
                preceded_sequencer.sequence.tail.connect(sequence.head)
            else:
                preceded_sequencer._sequence = sequence

            if preceded_sequencer.sequence.is_singular:
                preceded_sequencer._valid_sequence = False
            else:
                if Gate.label in str(preceded_sequencer.sequence.head) and \
                   Gate.label in str(preceded_sequencer.sequence.tail) and \
                   Link.label in str(preceded_sequencer.sequence.tail.prev):
                    preceded_sequencer._valid_sequence = True

            return preceded_sequencer

        return connect

    @MType(OneOfType(str, Gate, Socket), size=OneOfType(int, None), name=str)
    def add(self, layer, *, size=None, name=''):
        """
        Add new sequence layer
        Arguments:
            size:
            layer:
            name
        Returns:
            self
        """
        sequencer = self.create(layer, size=size, name=name)(self)
        self._sequence = sequencer.sequence
        self._valid_sequence = sequencer._valid_sequence
        return self

    @MType(pzero=OneOfType(float, None),
           weight_init=OneOfType(str, Initializer, None),
           weight_reg=OneOfType(str, Regularizer, None),
           bias_init=OneOfType(str, float, Initializer, None),
           moving_mean_init=OneOfType(str, float, Initializer, None),
           moving_variance_init=OneOfType(str, float, Initializer, None),
           gamma_init=OneOfType(str, float, Initializer, None),
           beta_init=OneOfType(str, float, Initializer, None),
           optim=OneOfType(str, Optimizer, None))
    def reconfig(self,
                 *,
                 pzero=None,
                 weight_init=None,
                 weight_reg=None,
                 bias_init=None,
                 moving_mean_init=None,
                 moving_variance_init=None,
                 gamma_init=None,
                 beta_init=None,
                 optim=None):
        """
        Reconfig the previous layer in sequence.
        Arguments:
            pzero:
            weight_init:
            weight_reg:
            bias_init:
            moving_mean_init:
            moving_variance_init:
            gamma_init:
            beta_init:
            optim:
        Returns:
            self
        """
        if not self.is_valid:
            raise RuntimeError(f'Sequencer {self.name} sequence is valid.')
        layer = self.sequence.tail
        if Gate.label in str(layer):
            if layer.has_prev:
                if weight_init is None and weight_reg is None and \
                   bias_init is None and optim is None:
                    warnings.warn(
                        f'No reconfiguration was applied to layer {layer.label}.',
                        UserWarning)
                else:
                    layer.prev.reconfig(weight_init=weight_init,
                                        weight_reg=weight_reg,
                                        bias_init=bias_init,
                                        optim=optim)
            else:
                warnings.warn(
                    f'Reconfiguration was applied. Layer {layer.label} reconfiguration skipped.',
                    UserWarning)
        elif Dropout.label == layer.label:
            if pzero is None:
                warnings.warn(
                    f'No reconfiguration was applied to layer {layer.label}.',
                    UserWarning)
            else:
                layer.reconfig(pzero=pzero)
        elif BatchNorm.label == layer.label:
            if moving_mean_init is None and moving_variance_init is None and \
               gamma_init is None and beta_init is None and optim is None:
                warnings.warn(
                    f'No reconfiguration was applied to layer {layer.label}.',
                    UserWarning)
            else:
                layer.reconfig(moving_mean_init=moving_mean_init,
                               moving_variance_init=moving_variance_init,
                               gamma_init=gamma_init,
                               beta_init=beta_init,
                               optim=optim)
        return self

    @MType(pzero=OneOfType(float, None),
           weight_init=OneOfType(str, Initializer, None),
           weight_reg=OneOfType(str, Regularizer, None),
           bias_init=OneOfType(str, float, Initializer, None),
           moving_mean_init=OneOfType(str, float, Initializer, None),
           moving_variance_init=OneOfType(str, float, Initializer, None),
           gamma_init=OneOfType(str, float, Initializer, None),
           beta_init=OneOfType(str, float, Initializer, None),
           optim=OneOfType(str, Optimizer, None))
    def reconfig_all(self,
                     *,
                     pzero=None,
                     weight_init=None,
                     weight_reg=None,
                     bias_init=None,
                     moving_mean_init=None,
                     moving_variance_init=None,
                     gamma_init=None,
                     beta_init=None,
                     optim=None):
        """
        Reconfig all previous layers in sequence.
        Arguments:
            pzero:
            weight_init:
            weight_reg:
            bias_init:
            moving_mean_init:
            moving_variance_init:
            gamma_init:
            beta_init:
            optim:
        Returns:
            self
        """
        if not self.is_valid:
            raise RuntimeError(f'Sequencer {self.name} sequence is valid.')
        for layer in self.sequence.head:
            if Link.label == layer.label:
                layer.reconfig(weight_init=weight_init,
                               weight_reg=weight_reg,
                               bias_init=bias_init,
                               optim=optim)
            elif Dropout.label == layer.label:
                layer.reconfig(pzero=pzero)
            elif BatchNorm.label == layer.label:
                layer.reconfig(moving_mean_init=moving_mean_init,
                               moving_variance_init=moving_variance_init,
                               gamma_init=gamma_init,
                               beta_init=beta_init,
                               optim=optim)
        return self
コード例 #17
0
class Layer(object, metaclass=Layer):
    _label = LAYER.LABEL
    _arrangement = LAYER.ARRANGEMENT
    """
    Layer base class.
    Arguments:
        shape: layer shape
        name: layer name
    """
    @MType(shape=(int, ), name=str)
    def __init__(self, *, shape=(1, 1), name=''):
        self._name = name
        self._next = None
        self._prev = None
        self._shape = None
        self._locked = False
        self.reconfig(shape=shape)

    def __str__(self):
        if self.name != '':
            return self.name + '_' + self.label
        else:
            return self.label

    def __iter__(self):
        """
        Set layer to be an iterator to allows iteration over all connected layers.
        """
        layer = self.head
        while layer is not None:
            yield layer
            layer = layer.next

    # ------------------------------------------------------------------------

    @property
    def label(self):
        """
        Get layer label.
        Returns:
            str
        """
        return type(self).label

    @property
    def arrangement(self):
        """
        Get layer arrangement.
        Returns:
            tuple
        """
        return type(self).arrangement

    @property
    def shape(self):
        """
        Get layer shape.
        Returns:
            tuple
        """
        return self._shape

    @property
    def size(self):
        """
        Get layer size.
        Returns:
            int
        """
        return self.shape[1]

    @property
    def index(self):
        """
        Get layer index.
        Returns:
            int
        """
        if self.has_prev:
            return self.prev.index + 1
        else:
            return 0

    @property
    def name(self):
        """
        Get layer name.
        Returns:
            str
        """
        return self._name

    @name.setter
    @MType(str)
    def name(self, name):
        """
        Set layer name.
        Arguments:
            name: string name
        """
        self._name = name

    @property
    def next(self):
        """
        Get next layer.
        Returns:
            layer
        """
        return self._next

    @property
    def prev(self):
        """
        Get previous layer.
        Returns:
            layer
        """
        return self._prev

    @property
    def head(self):
        """
        Get head layer.
        Returns:
            layer
        """
        if self.has_prev:
            if self.is_head:
                return self
            else:
                return self.prev.head
        else:
            return self

    @property
    def tail(self):
        """
        Get tail layer.
        Returns:
            layer
        """
        if self.has_next:
            if self.is_tail:
                return self
            else:
                return self.next.tail
        else:
            return self

    @property
    def has_prev(self):
        """
        Check if there is a connection to previous layer.
        Returns:
            bool
        """
        return self.prev is not None

    @property
    def has_next(self):
        """
        Check if there is a connection to next layer.
        Returns:
            bool
        """
        return self.next is not None

    @property
    def is_head(self):
        """
        Check if layer is head.
        Returns:
            bool
        """
        return self.is_singular or (self.next is not None
                                    and self.prev is None)

    @property
    def is_tail(self):
        """
        Check if layer is tail.
        Returns:
            bool
        """
        return self.is_singular or (self.next is None
                                    and self.prev is not None)

    @property
    def is_body(self):
        """
        Check if layer is center body.
        Returns:
            bool
        """
        return self.next is not None and self.prev is not None

    @property
    def is_singular(self):
        """
        Check if layer is a singular layer with no connection.
        Returns:
            bool
        """
        return self.next is None and self.prev is None

    @MType(Layer)
    def is_connected_to(self, layer):
        """
        Check if layer is already connected.
        Arguments:
            layer: layer to be check for connectivity
        Returns:
            bool
        """
        connected = False
        for connected_layer in self.head:
            connected = connected_layer is layer
            if connected:
                break
        return connected

    @property
    def is_locked(self):
        """
        Check if layer is locked.
        Returns:
            bool
        """
        return self._locked

    @property
    @abc.abstractmethod
    def inputs(self):
        """
        Get layer forward pass input. Not implemented.
        """
        pass

    @property
    @abc.abstractmethod
    def outputs(self):
        """
        Get layer forward pass output. Not implemented.
        """
        pass

    def lock(self):
        """
        Finalize by locking this layer and connecting layers in connection.
        """
        if not self.is_locked:
            self._locked = True
            if self.has_next:
                self.next.lock()
            if self.has_prev:
                self.prev.lock()

    def unlock(self):
        """
        Unlock this layer and connecting layers in connection.
        """
        if self.is_locked:
            self._locked = False
            if self.has_next:
                self.next.unlock()
            if self.has_prev:
                self.prev.unlock()

    @MType(shape=OneOfType((int, ), None))
    def reconfig(self, *, shape=None):
        """
        Reconfig layer.
        Arguments:
            shape:
        """
        if shape is not None:
            if not all(axis >= 1 for axis in shape):
                raise ValueError(f'Shape {shape} has axis < 1.')
            if len(shape) < 2:
                raise ValueError('Shape must have atleast 2 axes.')
            if self.is_locked:
                warnings.warn(
                    f'Layer {self.name} is locked. Reconfig layer shape skipped.',
                    UserWarning)
            if not self.is_singular:
                warnings.warn(
                    f'Layer {self.name} has connection to other layers. Reconfig layer shape skipped.',
                    UserWarning)
            self._shape = shape
        self.reset()

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return layer state snapshot as a dict.
        Arguments:
            as_json: set to True to convert and return dict as JSON
            beautify_json: set to True to beautify JSON
        Returns:
            dict
        """
        snapshot = {
            'index': self.index,
            'name': self.name,
            'label': self.label,
            'base_label': Layer.label,
            'shape': self.shape,
            'locked': self.is_locked
        }

        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()

    @MType(int)
    def from_index(self, index):
        """
        Goto layer at index.
        Arguments:
            index: layer index
        Returns:
            layer
        """
        layer = self.head
        target_index = 0
        while layer is not None:
            if target_index == index:
                break
            if target_index > index:
                layer = None
                break
            if target_index < index:
                target_index += 1
            layer = layer.next
        if layer is None:
            warnings.warn(f'No layer is found at index {index}.', UserWarning)
        return layer

    @MType(Layer, position=str)
    def connect(self, layer, *, position='ahead'):
        """
        Add a new layer ahead or behind this layer.
        Arguments:
            layer: next layer to make connection to
            position: connection position, ahead or behind
        Returns:
            layer
        """
        if self.is_locked:
            warnings.warn(
                f'Cannot make connection from locked layer {self.name} to layer {layer.name}. Connecting layer skipped.',
                UserWarning)
            return self
        elif layer.is_connected_to(self):
            warnings.warn(
                f'Layer {layer.name} is already connected to {self.name}.',
                UserWarning)
            return self
        else:
            if position == 'ahead':
                if not self.is_singular and (self.is_head or self.is_body):
                    if not layer.is_singular:
                        raise RuntimeError(
                            f'Cannot make connection from layer {self.name} to a non-singular layer {layer.name}.'
                        )
                    if layer.arrangement[0] not in self.arrangement[1]:
                        raise RuntimeError(
                            f'Cannot make connection from layer {self.name} to layer {layer.name}. Mismatched arrangement.'
                        )
                    if layer.arrangement[1] not in self._next.arrangement[0]:
                        raise RuntimeError(
                            f'Cannot make connection from layer {layer.name} to layer {self._next.name}. Mismatched arrangement.'
                        )
                    self._next._prev = layer
                    layer._next = self._next
                    layer._prev = self
                    self._next = layer
                    return layer
                elif self.is_singular or self.is_tail:
                    if layer.is_body or (layer.is_tail and layer.has_prev):
                        raise RuntimeError(
                            f'Cannot make connection from layer {self.name} to a non-signular layer {layer.name} that is either a body or tail.'
                        )
                    if layer.arrangement[0] not in self.arrangement[1]:
                        raise RuntimeError(
                            f'Cannot make connection from layer {self.name} to layer {layer.name}. Mismatched arrangement.'
                        )
                    self._next = layer
                    layer._prev = self
                    return layer
            elif position == 'behind':
                if not layer.is_singular:
                    raise RuntimeError(
                        f'Cannot make connection from layer {self.name} to a non-singular layer {layer.name}.'
                    )
                if self.is_singular or self.is_head:
                    if self.arrangement[0] not in layer.arrangement[1]:
                        raise RuntimeError(
                            f'Cannot make connection from layer {layer.name} to layer{self.name}. Mismatched arrangement.'
                        )
                    self._prev = layer
                    layer._next = self
                    return layer
                elif self.is_body or (not self.is_singular and self.is_tail):
                    if self.arrangement[0] not in layer.arrangement[1]:
                        raise RuntimeError(
                            f'Cannot make connection from layer {layer.name} to layer {self.name}. Mismatched arrangement.'
                        )
                    if layer.arrangement[0] not in self._prev.arrangement[1]:
                        raise RuntimeError(
                            f'Cannot make connection from layer {self._prev.name} to layer {layer.name}. Mismatched arrangement.'
                        )
                    self._prev._next = layer
                    layer._prev = self._prev
                    layer._next = self
                    self._prev = layer
                    return layer
            else:
                raise TypeError(f'Unknown position type {position}.')

    @MType(Layer)
    def replace_with(self, layer):
        """
        Replace this layer with a different layer.
        Arguments:
            layer: layer to replace with
        Returns:
            layer
        """
        if self.is_locked:
            warnings.warn(
                f'Cannot replace locked layer {self.name} with layer {layer.name}. Replace layer skipped.',
                UserWarning)
            return self
        elif layer.is_connected_to(self):
            warnings.warn(
                f'Layer {layer.name} is already connected to {self.name}.',
                UserWarning)
            return self
        else:
            if not layer.is_singular:
                raise RuntimeError(
                    f'Cannot make connection from layer {self.name} to non-singular layer {layer.name}.'
                )
            if self.is_singular:
                raise RuntimeError(
                    f'Cannot replace a non-connecting layer {self.name} with layer {layer.name}.'
                )
            if self.is_head:
                if self._next.arrangement[0] not in layer.arrangement[1]:
                    raise RuntimeError(
                        f'Cannot make connection from layer {layer.name} to layer {self._next.name}. Mismatched arrangement.'
                    )
                self._next._prev = layer
                layer._next = self._next
                self._next = None
            elif self.is_body:
                if self._next.arrangement[0] not in layer.arrangement[1]:
                    raise RuntimeError(
                        f'Cannot make connection from layer {self._next.name} to layer {layer.name}. Mismatched arrangement.'
                    )
                if layer.arrangement[0] not in self._prev.arrangement[1]:
                    raise RuntimeError(
                        f'Cannot make connection from layer {layer.name} to layer {self._prev.name}. Mismatched arrangement.'
                    )
                self._next._prev = layer
                self._prev._next = layer
                layer._next = self._next
                layer._prev = self._prev
                self._next = None
                self._prev = None
            elif self.is_tail:
                if layer.arrangement[0] not in self._prev.arrangement[1]:
                    raise RuntimeError(
                        f'Cannot make connection from layer {self._prev.name} to layer {layer.name}. Mismatched arrangement.'
                    )
                self._prev._next = layer
                layer._prev = self._prev
                self._prev = None
            return layer

    def disconnect(self):
        """
        Remove self from connection.
        Returns:
            layer
        """
        if self.is_locked:
            warnings.warn(
                f'Cannot remove locked layer {self.name}. Remove layer skipped.',
                UserWarning)
            return self
        else:
            if self.is_head:
                self._next._prev = None
            elif self.is_body:
                if self._next.arrangement[0] not in self._prev.arrangement[1]:
                    raise RuntimeError(
                        f'Cannot make connection from layer {self._prev.name} to layer {self._next.name}. Mismatched arrangement.'
                    )
                self._next._prev = self._prev
                self._prev._next = self._next
            elif self.is_tail:
                self._prev._next = None
            else:
                raise RuntimeError(
                    f'Cannot remove a non-connecting layer {self.name}.')
            self._next = None
            self._prev = None
            return self

    @abc.abstractmethod
    def unassign_hooks(self):
        """
        Unassign all callback functions. Not implemented.
        """
        pass

    @abc.abstractmethod
    def assign_hook(self):
        """
        Assign callback functions. Not implemented.
        """
        pass

    @abc.abstractmethod
    def forward(self):
        """
        Layer forward pass method. Not implemented.
        """
        pass

    @abc.abstractmethod
    def backward(self):
        """
        Layer backward pass method. Not implemented.
        """
        pass
コード例 #18
0
class RandomNormal(Initializer):
    _label = INITIALIZER.RANDOM_NORMAL_LABEL
    """
    Initialize an array with shape with a random normal at a mean +/- variance
    """
    @MType(mean=float, variance=float, seed=OneOfType(int, None))
    def __init__(self,
                 *,
                 mean=INITIALIZER.DEFAULT_RANDOM_NORMAL_MEAN,
                 variance=INITIALIZER.DEFAULT_RANDOM_NORMAL_VARIANCE,
                 seed=None):
        self._rnormal_t = None
        self._mean = mean
        self._variance = variance
        if seed is not None and seed < 0:
            warnings.warn('Seed must be > 0. Reset to None', UserWarning)
            self._seed = None
        self._seed = seed
        self._rng = np.random.RandomState(seed=self._seed)
        super().__init__()

    @MType((int, ), dtype=type(np.dtype), reuse=bool)
    def __call__(self, shape, *, dtype=np.float32, reuse=False):
        if self._rnormal_t is None or self._rnormal_t.shape != shape or not reuse:
            self._rnormal_t = self._rng.normal(loc=self._mean,
                                               scale=self._variance,
                                               size=shape).astype(dtype)
        if self._rnormal_t.shape != shape and reuse:
            warnings.warn(
                'Unable to reuse last random normal because the shape is different.',
                UserWarning)
        return self._rnormal_t.copy()

    # ------------------------------------------------------------------------

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return initializer state snapshot as a dict.
        Arguments:
            as_json: set to True to convert and return dict as JSON
            beautify_json: set to True to beautify JSON
        Returns:
            dict
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({
            'seed':
            self._seed,
            'dtype':
            str(self._rnormal_t.dtype)
            if self._rnormal_t is not None else None,
            'mean':
            self._mean,
            'variance':
            self._variance
            # 'values': self._rnormal_t.tolist() if self._rnormal_t is not None else None
        })
        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()
コード例 #19
0
class MSELoss(Objective):
    _label = OBJECTIVE.MSE_LOSS_LABEL
    """
    Objective using mean square error for loss function.
    """

    # ------------------------------------------------------------------------

    @MType(shape=OneOfType((int,), None),
           metric=OneOfType((str,), None))
    def reconfig(self, *,
                 shape=None,
                 metric=None):
        """
        Reconfig objective
        Arguments:
            shape: objective layer shape
            metric: loss metric
        """
        if metric is not None:
            if 'loss' in metric:
                self._evaluation['metric']['loss'] = 0
            if ('accuracy' or 'acc') in metric or \
               ('recall' or 'rc') in metric or \
               ('precision' or 'prec') in metric or \
               ('f1_score' or 'f1') in metric:
                warnings.warn(f'Mean square error objective only have loss metric. Ignoring metrics {metric}', UserWarning)
            else:
                raise TypeError(f'Unknown metric {metric} for objective {self.name}.')
        if shape is not None:
            super().reconfig(shape=shape)
        self.reset()

    @MType(np.ndarray, np.ndarray, dict)
    def compute_loss(self, y_t, y_prime_t, *, residue={}):
        """
        Compute the loss.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            residue:
        Returns:
            tuple
        """
        ey_t = y_t - y_prime_t
        ly_t = np.square(ey_t)
        return (ly_t, residue)

    @MType(np.ndarray, np.ndarray, dict)
    def compute_loss_grad(self, y_t, y_prime_t, *, residue={}):
        """
        Compute the loss gradient tensor for gradient descent update.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            residue:
        Returns:
            tuple
        """
        ey_t = y_t - y_prime_t
        eyg_t = 2 * ey_t

        return (eyg_t, residue)

    @MType(np.ndarray, np.ndarray, np.ndarray, dict)
    def compute_evaluation_metric(self, y_t, y_prime_t, ly_t, evaluation_metric):
        """
        Compute the evaluation metric.
        Arguments:
            y_t: output (y) tensor
            y_prime_t: expected output (y) tensor
            ly_t: loss tensor
        Returns:
            metric
        """
        if 'loss' in evaluation_metric:
            evaluation_metric['loss'] += ly_t.mean()

        return evaluation_metric
コード例 #20
0
class GlorotRandomUniform(Initializer):
    _label = INITIALIZER.GLOROT_RANDOM_UNIFORM_LABEL
    """
    Initialize an array with shape with a glorot random uniform at a 0 +/- sqrt(2 / sum(shape))
    """
    @MType(seed=OneOfType(int, None))
    def __init__(self, *, seed=None):
        self._gruniform_t = None
        if seed is not None and seed < 0:
            warnings.warn('Seed must be > 0. Reset to None', UserWarning)
            self._seed = None
        self._seed = seed
        self._rng = np.random.RandomState(seed=self._seed)
        super().__init__()

    @MType((int, ), dtype=type(np.dtype), reuse=bool)
    def __call__(self, shape, *, dtype=np.float32, reuse=False):
        if self._gruniform_t is None or self._gruniform_t.shape != shape or not reuse:
            spread = math.sqrt(2 / sum(shape)) / 2
            min = -spread
            max = spread
            self._gruniform_t = self._rng.uniform(low=min,
                                                  high=max,
                                                  size=shape).astype(dtype)
        if self._gruniform_t.shape != shape and reuse:
            warnings.warn(
                'Unable to reuse last glorot uniform because the shape is different.',
                UserWarning)
        return self._gruniform_t.copy()

    # ------------------------------------------------------------------------

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return initializer state snapshot as a dict.
        Arguments:
            as_json: set to True to convert and return dict as JSON
            beautify_json: set to True to beautify JSON
        Returns:
            dict
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({'seed': self._seed})
        if self._gruniform_t is not None:
            spread = math.sqrt(2 / sum(self._gruniform_t.shape)) / 2
            min = -spread
            max = spread
            snapshot.update({
                'dtype': str(self._gruniform_t.dtype),
                'min': min,
                'max': max,
                'spread': spread
                # 'values': self._gruniform_t.tolist() if self._gruniform_t is not None else None
            })
        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()
コード例 #21
0
class Link(Layer):
    _label = LINK.LABEL
    _arrangement = LINK.ARRANGEMENT
    """
    A fully connected link that connect two layers together consited of a weight matrix and bias vector.
    Arguments:
        shape:
        name:
        weight_init: weight matrix initializer
        weight_reg: weight matrix regularization
        bias_init: bias vector initializer
        optim:
    """
    @MType(shape=(int,),
           name=str,
           weight_init=OneOfType(str, Initializer),
           weight_reg=OneOfType(str, Regularizer, None),
           bias_init=OneOfType(str, float, Initializer),
           optim=OneOfType(str, Optimizer))
    def __init__(self, *,
                 shape=(1, 1),
                 name='',
                 weight_init='random_normal',
                 weight_reg='not_use',
                 bias_init='zeros',
                 optim='sgd'):
        self._frozen = False
        self._weight_init = None
        self._weight_reg = None
        self._bias_init = None
        self._w_m = None
        self._b_v = None
        self._optim = None

        self._monitor = None

        super().__init__(shape=shape, name=name)
        self.reconfig(weight_init=weight_init,
                      weight_reg=weight_reg,
                      bias_init=bias_init,
                      optim=optim)

    def __str__(self):
        return super().__str__() + '_' + LINK.LABEL

    # ------------------------------------------------------------------------

    @property
    def is_frozen(self):
        """
        Check if layer is frozen.
        Returns:
            is frozen flag
        """
        return self._frozen

    def freeze(self):
        """
        Freeze layer
        """
        self._frozen = True

    def unfreeze(self):
        """
        Unfreeze layer
        """
        self._frozen = False

    @property
    def inputs(self):
        """
        Get link forward pass input tensor.
        Returns:
            tensor
        """
        if self.has_prev:
            return self.prev.outputs
        else:
            return None

    @property
    def outputs(self):
        """
        Get link forward pass output tensor.
        Returns:
            tensor
        """
        if self.has_next:
            return self.next.inputs
        else:
            return None

    @property
    def weights(self):
        """
        Get link weight matrix.
        Returns:
            matrix
        """
        if self._w_m is not None:
            return self._w_m.copy()
        else:
            return None

    @weights.setter
    @MType(np.ndarray)
    @MShape(axis=-1)
    def weights(self, w_m):
        """
        Set link weight matrix.
        """
        if self.is_frozen:
            warnings.warn(f'Cannot set weights to a frozen link {self.name}.', UserWarning)
        else:
            np.copyto(self._w_m, w_m, casting='same_kind')

    @property
    def biases(self):
        """
        Get link bias vector.
        Returns:
            vector
        """
        if self._b_v is not None:
            return self._b_v.copy()
        else:
            return None

    @biases.setter
    @MType(np.ndarray)
    @MShape(axis=1)
    def biases(self, b_v):
        """
        Set link bias vector.
        """
        if self.is_frozen:
            warnings.warn(f'Cannot set biases to a frozen link {self.name}.', UserWarning)
        else:
            np.copyto(self._b_v, b_v, casting='same_kind')

    @property
    def optim(self):
        """
        Get link optimizer.
        Returns:
            optimizer
        """
        return self._optim

    def reset(self):
        """
        Reset internal evaluation states.
        """
        if self._weight_init is not None:
            self._w_m = self._weight_init(self.shape)
        if self._bias_init is not None:
            self._b_v = self._bias_init((1, self.size))
        if self._optim is not None:
            self._optim.reset()

    @MType(shape=OneOfType((int,), None),
           weight_init=OneOfType(str, Initializer, None),
           weight_reg=OneOfType(str, Regularizer, None),
           bias_init=OneOfType(str, float, Initializer, None),
           optim=OneOfType(str, Optimizer, None))
    def reconfig(self, *,
                 shape=None,
                 weight_init=None,
                 weight_reg=None,
                 bias_init=None,
                 optim=None):
        """
        Reconfig link
        Arguments:
            shape
            ;
            weight_init:
            weight_reg:
            bias_init:
            optim:
        """
        if self.is_frozen:
            warnings.warn(f'Link {self.name} is frozen. Reconfig link skipped.', UserWarning)
        else:
            if weight_init is not None:
                if isinstance(weight_init, str):
                    weight_init_label = weight_init
                    if self._weight_init is not None and weight_init_label == self._weight_init.label:
                        warnings.warn(
                            'No change made to link weight initializer. Re-initializing link weights skipped.',
                            UserWarning)
                    else:
                        if Zeros.label == weight_init_label:
                            self._weight_init = Zeros()
                        elif Ones.label == weight_init_label:
                            self._weight_init = Ones()
                        elif Identity.label == weight_init_label:
                            self._weight_init = Identity()
                        elif RandomNormal.label == weight_init_label:
                            self._weight_init = RandomNormal()
                        elif RandomUniform.label == weight_init_label:
                            self._weight_init = RandomUniform()
                        elif GlorotRandomNormal.label == weight_init_label:
                            self._weight_init = GlorotRandomNormal()
                        elif GlorotRandomUniform.label == weight_init_label:
                            self._weight_init = GlorotRandomUniform()
                        else:
                            raise TypeError(f'Unknown weight initializer {weight_init_label} for link {self.name}.')
                        self._w_m = self._weight_init(self.shape)
                else:
                    if self._weight_init is not None and weight_init.label == self._weight_init.label:
                        warnings.warn(
                            'No change made to link weight initializer. Re-initializing link weights skipped.',
                            UserWarning)
                    else:
                        self._weight_init = weight_init
                        self._w_m = self._weight_init(self.shape)
            if weight_reg is not None:
                if isinstance(weight_reg, str):
                    weight_reg_label = weight_reg
                    if self._weight_reg is not None and weight_reg_label == self._weight_reg.label:
                        warnings.warn(
                            'No change made to link weight regularizer. Reconfig link weight regularizer skipped.',
                            UserWarning)
                    else:
                        if weight_reg_label == 'not_use':
                            self._weight_reg = None
                        elif L1Lasso.label == weight_reg_label:
                            self._weight_reg = L1Lasso()
                        elif L2Ridge.label == weight_reg_label:
                            self._weight_reg = L2Ridge()
                        elif L1L2ElasticNet.label == weight_reg_label:
                            self._weight_reg = L1L2ElasticNet()
                        else:
                            raise TypeError(f'Unknown weight regularizer {weight_reg_label} for link {self.name}.')
                else:
                    if self._weight_reg is not None and weight_reg.label == self._weight_reg.label:
                        warnings.warn(
                            'No change made to link weight initializer. Reconfig link weight regularizer skipped.',
                            UserWarning)
                    else:
                        self._weight_reg = weight_reg
            if bias_init is not None:
                if isinstance(bias_init, str):
                    bias_init_label = bias_init
                    if self._bias_init is not None and bias_init_label == self._bias_init.label:
                        warnings.warn(
                            'No change made to link bias initializer. Re-initializing link biases skipped.',
                            UserWarning)
                    else:
                        if bias_init_label == 'not_use':
                            self._bias_init = None
                        elif Zeros.label == bias_init_label:
                            self._bias_init = Zeros()
                        elif Ones.label == bias_init_label:
                            self._bias_init = Ones()
                        else:
                            raise TypeError(f'Unknown bias initializer {bias_init_label} for link {self.name}.')
                        if self._bias_init is not None:
                            self._b_v = self._bias_init((1, self.size))
                        else:
                            self._b_v = None
                elif isinstance(bias_init, float):
                    self._bias_init = Constant(bias_init)
                    self._b_v = self._bias_init((1, self.size))
                else:
                    if self._bias_init is not None and bias_init.label == self._bias_init.label:
                        warnings.warn(
                            'No change made to link bias initializer. Re-initializing link biases skipped.',
                            UserWarning)
                    else:
                        self._bias_init = bias_init
                        self._b_v = self._bias_init((1, self.size))
            if optim is not None:
                if isinstance(optim, str):
                    optim_label = optim
                    if self._optim is not None and optim_label == self._optim.label:
                        warnings.warn(
                            'No change made to link optimizer. Reconfig link optimization skipped.',
                            UserWarning)
                    else:
                        if SGD.label == optim_label:
                            self._optim = SGD()
                        elif SGDM.label == optim_label:
                            self._optim = SGDM()
                        elif RMSprop.label == optim_label:
                            self._optim = RMSprop()
                        elif Adam.label == optim_label:
                            self._optim = Adam()
                        else:
                            raise TypeError(f'Unknown optimizer {optim_label} for link {self.name}.')
                else:
                    if self._optim is not None and optim.label == self._optim.label:
                        warnings.warn(
                            'No change made to link optimizer. Reconfig link optimization skipped.',
                            UserWarning)
                    else:
                        self._optim = optim
            if shape is not None:
                super().reconfig(shape=shape)
            self.reset()

    @MType(as_json=bool, beautify_json=bool)
    def snapshot(self, *, as_json=False, beautify_json=True):
        """
        Return link as a snapshot dict data.
        Arguments:
            as_json:
            beautify_json:
        Returns:
            dict
        """
        snapshot = super().snapshot(as_json=False, beautify_json=False)
        snapshot.update({
            'base_label': Link.label + '_' + snapshot['base_label'],
            'frozen': self.is_frozen,
            'weight': {
                'dtype': str(self.weights.dtype),
                'values': self.weights.tolist()
            } if self.weights is not None else None,
            'bias': {
                'dtype': str(self.biases.dtype),
                'values': self.biases.tolist()
            } if self.biases is not None else None,
            'weight_init': self._weight_init.snapshot(as_json=False, beautify_json=False),
            'weight_reg': self._weight_reg.snapshot(as_json=False, beautify_json=False) if self._weight_reg is not None else None,
            'bias_init': self._bias_init.snapshot(as_json=False, beautify_json=False) if self._bias_init is not None else None,
            'optim': self._optim.snapshot(as_json=False, beautify_json=False)
        })

        if as_json:
            if beautify_json:
                return json.dumps(snapshot, indent=4, sort_keys=False)
            else:
                return json.dumps(snapshot)
        else:
            return snapshot.copy()

    def unassign_hooks(self):
        """
        Unassign all callback functions.
        """
        self._monitor = None

    @MType(monitor=OneOfType(callable, None))
    def assign_hook(self, *,
                    monitor=None):
        """
        Assign callback functions.
        Arguments:
            monitor: callback function to do probing during forward/backward pass
        """
        if monitor is not None:
            self._monitor = monitor

    @MType(dict, np.ndarray, residue=dict)
    @MShape(axis=1, transpose=True)
    def forward(self, stage, a_t, *, residue={}):
        """
        Do forward forward pass by calculating the weight sum of the pre-nonlinearity (z) tensor.
        Arguments:
            stage: forward stage
            a_t: post-nonlinearity (a) tensor
            residue:
        Returns:
            layer
        """
        if self.has_next:
            if self._bias_init is not None:
                z_t = np.inner(a_t, self._w_m.transpose()) + self._b_v
            else:
                z_t = np.inner(a_t, self._w_m.transpose())

            if self._monitor is not None:
                report = {
                    'pass': '******',
                    'stage': stage,
                    'inputs': self.inputs,
                    'outputs': self.outputs,
                    'weights': self.weights,
                    'biases': self.biases,
                    'residue': residue
                }
                self._monitor(report)

            return self.next.forward(stage, z_t, residue=residue)
        else:
            warnings.warn(f'Dense link {self.name} connection is incomplete. Missing connection to next layer.', UserWarning)
            return self

    @MType(dict, np.ndarray, np.ndarray, residue=dict)
    @MShape(axis=1, transpose=False)
    def backward(self, stage, azg_t, eag_t, *, residue={}):
        """
        Do backward backward pass by calculate error gradient tensor w.r.t. nonlinearity.
        Arguments:
            stage: backward stage
            azg_t: gradient post-nonlinearity (a) tensor w.r.t. pre-nonlinearity (z) tensor
            eag_t: gradient error tensor w.r.t. post-nonlinearity (a) tensor
            residue:
        Returns:
            layer
        """
        if self.has_prev:
            delta_t = np.multiply(eag_t, azg_t)
            if not self.is_frozen:
                if 'epoch' in stage:
                    epoch = stage['epoch']
                else:
                    raise ValueError('Input stage is missing the required epoch number.')

                hparam = stage['hparam']
                batch_size = hparam['batch_size']
                zwg_t = self.inputs

                if self._bias_init is not None:
                    if batch_size == 1:
                        ewg_m = np.multiply(zwg_t.transpose(), delta_t)
                        ebg_v = delta_t
                    else:
                        ewg_m = np.inner(zwg_t.transpose(), delta_t.transpose())
                        ebg_v = delta_t.mean(axis=0)

                    [w_delta_m, b_delta_v] = self._optim.compute_grad_descent_step(epoch, [ewg_m, ebg_v], hparam)

                    if self._weight_reg is not None:
                        w_reg_m = self._weight_reg.compute_regularization(epoch, self._w_m, hparam)
                        self._w_m -= w_delta_m + w_reg_m
                    else:
                        self._w_m -= w_delta_m

                    self._b_v -= b_delta_v
                else:
                    if batch_size == 1:
                        ewg_m = np.multiply(zwg_t.transpose(), delta_t)
                    else:
                        ewg_m = np.inner(zwg_t.transpose(), delta_t.transpose())
                    [w_delta_m] = self._optim.compute_grad_descent_step(epoch, [ewg_m], hparam)

                    if self._weight_reg is not None:
                        w_reg_m = self._weight_reg.compute_regularization(epoch, self._w_m, hparam)
                        self._w_m -= w_delta_m + w_reg_m
                    else:
                        self._w_m -= w_delta_m

            eag_t = np.inner(self._w_m, delta_t).transpose()

            if self._monitor is not None:
                report = {
                    'pass': '******',
                    'stage': stage,
                    'weights': self.weights,
                    'biases': self.biases,
                    'grad': {
                        'delta': delta_t,
                        'az': azg_t,
                        'ea': eag_t
                    },
                    'residue': residue
                }
                self._monitor(report)

            return self.prev.backward(stage, eag_t, residue=residue)
        else:
            warnings.warn(f'Dense link {self.name} connection is incomplete. Missing connection to previous layer.', UserWarning)
            return self