コード例 #1
0
 def __init__(self,X,Y,num_dims):
   mX = X - X.mean(0)
   mY = Y - Y.mean(0)
   Cxx = np.dot(mX.T,mX)
   Cyy = np.dot(mY.T,mY)
   Cxy = np.dot(mX.T,mY)
   d1,d2 = Cxy.shape
   if np.linalg.matrix_rank(Cxx) < d1 or np.linalg.matrix_rank(Cyy) < d2:
     lam = X.shape[0]/2.0
   else:
     lam = 0
   Cx = block_antidiag(Cxy,Cxy.T)
   Cy = sp.linalg.block_diag(Cxx + lam*np.eye(d1), Cyy + lam*np.eye(d2))
   vals,vecs = sp.linalg.eig(Cx,Cy)
   vecs = vecs[np.argsort(vals)[::-1]]  # descending order
   self.pX = vecs[:d1,:num_dims]
   self.pY = vecs[d1:d1+d2,:num_dims]
コード例 #2
0
 def __init__(self,X,Y,num_dims):
   mX = X - X.mean(0)
   mY = Y - Y.mean(0)
   Cxx = np.dot(mX.T,mX)
   Cyy = np.dot(mY.T,mY)
   Cxy = np.dot(mX.T,mY)
   d1,d2 = Cxy.shape
   if np.linalg.matrix_rank(Cxx) < d1 or np.linalg.matrix_rank(Cyy) < d2:
     lam = X.shape[0]/2.0
   else:
     lam = 0
   Cx = block_antidiag(Cxy,Cxy.T)
   Cy = sp.linalg.block_diag(Cxx + lam*np.eye(d1), Cyy + lam*np.eye(d2))
   vals,vecs = sp.linalg.eig(Cx,Cy)
   vecs = vecs[np.argsort(vals)[::-1]]  # descending order
   self.pX = vecs[:d1,:num_dims]
   self.pY = vecs[d1:d1+d2,:num_dims]
コード例 #3
0
ファイル: test.py プロジェクト: Jiawei98/deepalignomics
 def test_block_antidiag(self):
     expected = np.array([[0, 0, 0, 1], [0, 0, 2, 3], [2, 3, 0, 0],
                          [4, 5, 0, 0]])
     assert_array_equal(util.block_antidiag(self.foo[:2], self.foo[1:]),
                        expected)
コード例 #4
0
ファイル: test.py プロジェクト: fangzheng354/ManifoldWarping
 def test_block_antidiag(self):
   expected = numpy.array([[0,0,0,1],[0,0,2,3],[2,3,0,0],[4,5,0,0]])
   assert_array_equal(util.block_antidiag(self.foo[:2], self.foo[1:]), expected)
コード例 #5
0
 def __init__(self, X, Y, corr, num_dims, eps=1e-8):
     Wxy = corr.matrix()
     L = laplacian(block_antidiag(Wxy, Wxy.T))
     self.pX, self.pY = _linear_decompose(X, Y, L, num_dims, eps)
コード例 #6
0
 def __init__(self,X,Y,corr,num_dims,eps=1e-8):
   Wxy = corr.matrix()
   L = laplacian(block_antidiag(Wxy,Wxy.T))
   self.pX, self.pY = _linear_decompose(X,Y,L,num_dims,eps)