コード例 #1
0
ファイル: soinn.py プロジェクト: chaiwenda/minist
 def __find_nearest_nodes(self, num, signal, mahar=True):
     #if mahar: return self.__find_nearest_nodes_by_mahar(num, signal)
     n = self.nodes.shape[0]
     indexes = [0.0] * num
     sq_dists = [0.0] * num
     D = util.calc_distance(self.nodes, np.asarray([signal] * n))
     for i in range(num):
         indexes[i] = np.nanargmin(D)
         sq_dists[i] = D[indexes[i]]
         D[indexes[i]] = float('nan')
     return indexes, sq_dists
コード例 #2
0
ファイル: monster.py プロジェクト: nadako/dungeons
def monster_act(monster, level, game):
    if monster.get(InFOV).in_fov:
        player = level.player
        monster_pos = monster.get(Position)
        player_pos = player.get(Position)
        distance = calc_distance(monster_pos.x, monster_pos.y, player_pos.x, player_pos.y)
        if distance < 2:
            return AttackAction(player)
        else:
            dx = int(round((player_pos.x - monster_pos.x) / distance))
            dy = int(round((player_pos.y - monster_pos.y) / distance))
            return MoveAction(dx, dy)

    return WaitAction()
コード例 #3
0
ファイル: soinn.py プロジェクト: chaiwenda/minist
 def calculate_similarity_thresholds(self, node_indexes):
     sim_thresholds = []
     for i in node_indexes:
         pals = self.adjacent_mat[i, :]
         if len(pals) == 0:
             idx, sq_dists = self.__find_nearest_nodes(2, self.nodes[i, :])
             sim_thresholds.append(sq_dists[1])
         else:
             pal_indexes = []
             for k in pals.keys():
                 pal_indexes.append(k[1])
             sq_dists = util.calc_distance(self.nodes[pal_indexes], np.asarray([self.nodes[i]] * len(pal_indexes)))
             sim_thresholds.append(np.max(sq_dists))
     return sim_thresholds
コード例 #4
0
ファイル: monster.py プロジェクト: osm3000/dungeons
def monster_act(monster, level, game):
    if monster.get(InFOV).in_fov:
        player = level.player
        monster_pos = monster.get(Position)
        player_pos = player.get(Position)
        distance = calc_distance(monster_pos.x, monster_pos.y, player_pos.x,
                                 player_pos.y)
        if distance < 2:
            return AttackAction(player)
        else:
            dx = int(round((player_pos.x - monster_pos.x) / distance))
            dy = int(round((player_pos.y - monster_pos.y) / distance))
            return MoveAction(dx, dy)

    return WaitAction()
コード例 #5
0
 def get_activesite( self, cutoff ):
     # overall activesite dictionary
     # key: unique protein name (resname_reschain_resnum), value: list of ATOM lines per residue
     self.activesite_dict = {}
     
     # unique ligand name (resname_reschain_resnum)
     #value: list of 3-letter amino acid names
     self.activesite_lig_pro_res_dict = {}
     
     # unique ligand name (resname_reschain_resnum)
     #value: list of atom_line for each AA ( to get atom count later )
     self.activesite_lig_pro_atoms_dict = {}
     
     # activesite data holders
     self.num_activesite_res = 0
     self.activesite_residues = []
     self.num_activesite_atms = 0
     self.num_activesite_nonpolar_atoms = 0
     self.num_activesite_polar_atoms = 0
     self.num_activesite_unk_atom_types = 0
     self.activesite_num_nonpolar_atoms = {}
     self.activesite_num_polar_atoms = {}
     self.activesite_num_unk_atoms = {}
     
     for uniq_lig_name in self.ligand.keys():
         # list to store the 3 letter names of all of the protein residues within the cutoff distance of each ligand residue (by unique name)
         AS_names_in_activesite = []
         AS_atms_in_activesite = []
         
         for hetatm_line in self.ligand[ uniq_lig_name ]:
             # extract coordinates
             x_lig = hetatm_line.x_coord
             y_lig = hetatm_line.y_coord
             z_lig = hetatm_line.z_coord
             lig_xyz = [ x_lig, y_lig, z_lig ]
             
             # for each unique protein residue
             for uniq_pro_name in self.protein.keys():
                 # for each atom in the residue
                 for atom_line in self.protein[ uniq_pro_name ]:
                     # extract coordinates
                     x_pro = atom_line.x_coord
                     y_pro = atom_line.y_coord
                     z_pro = atom_line.z_coord
                     pro_xyz = [ x_pro, y_pro, z_pro ]
                     
                     # check the distance
                     if calc_distance( lig_xyz, pro_xyz ) <= cutoff:
                         # append the line if the unique protein residue has already been counted
                         if uniq_pro_name in self.activesite_residues:
                             if atom_line not in self.activesite_dict[ uniq_pro_name ]:
                                 self.activesite_dict[ uniq_pro_name ].append( atom_line )
                         
                         # store all of the unique names of the protein residues within the activesite
                         # also, store all of the atom_lines for each unique protein residue in the activesite
                         else:
                             self.activesite_residues.append( uniq_pro_name )
                             self.activesite_dict[ uniq_pro_name ] = []
                             self.activesite_dict[ uniq_pro_name ].append( atom_line )
                             
                             # store the 3 letter name of the amino acid within the activesite
                             three_letter_name = uniq_pro_name[0:3]
                             AS_names_in_activesite.append( three_letter_name )
                             
                         # store atom_line for each unique amino acid within the activesite to get an atom count later
                         if atom_line not in AS_atms_in_activesite:
                             AS_atms_in_activesite.append( atom_line )
                     
         # store the list of the 3 letter names for the amino acid within the self.activesite_lig_pro_dict according to which ligand it is near
         self.activesite_lig_pro_res_dict[ uniq_lig_name ] = AS_names_in_activesite
         self.activesite_lig_pro_atoms_dict[ uniq_lig_name ] = AS_atms_in_activesite
         
     # get number of activesite residues
     self.num_activesite_res = len( self.activesite_dict.keys() )
     
     # count the number of activesite atoms
     for uniq_lig_name in self.activesite_lig_pro_atoms_dict.keys():
         self.num_activesite_atms += len( self.activesite_lig_pro_atoms_dict[ uniq_lig_name ] )
         
         # prepare the counter for nonpolar, polar, and unknown atom types for each unique activesite residue
         self.activesite_num_nonpolar_atoms[ uniq_lig_name ] = 0
         self.activesite_num_polar_atoms[ uniq_lig_name ] = 0
         self.activesite_num_unk_atoms[ uniq_lig_name ] = 0
         
         # count the number of nonpolar and polar atoms
         for pdb_line in self.activesite_lig_pro_atoms_dict[ uniq_lig_name ]:
             # if element is nonpolar
             if pdb_line.element in nonpolar_atoms:
                 # total nonpolar activesite atoms
                 self.num_activesite_nonpolar_atoms += 1
                 
                 # number of nonpolar atoms for this activesite residue
                 self.activesite_num_nonpolar_atoms[ uniq_lig_name ] += 1
                 
             # if element is polar
             elif pdb_line.element in polar_atoms:
                 # total polar activesite atoms
                 self.num_activesite_polar_atoms += 1
                 
                 # number of polar atoms for this activesite residue
                 self.activesite_num_polar_atoms[ uniq_lig_name ] += 1
                 
             # else I don't know what this is
             else:
                 print "      * I didn't know what type of atom", "'%s'" %pdb_line.element(), "is. Please add it to the list"
                 # total unkown activesite atoms
                 self.num_activesite_unk_atom_types += 1
                 
                 # number of unknown atoms for this activesite residue
                 self.activesite_num_unk_atoms[ uniq_lig_name ] += 1
         
     # return information
     # if this ligand has no activesite for some reason
     if len( self.activesite_dict.keys() ) == 0:
         print "## Skipping", self.name, "because it had no activesite residues within", cutoff, "Angstroms of the ligand residue(s) ##"
         return False
     
     # otherwise print relevant information
     else:
         print "  ", self.name, "has", self.num_activesite_res, "activesite residues",
         print "and", self.num_activesite_atms, "non-hydrogen activesite atoms"
         return True
コード例 #6
0
 def count_contacts( self, cutoff ):
     # must have already found all residues within the activesite
     # counted as ligand to protein!!
     self.polar_polar = 0
     self.polar_nonpolar = 0
     self.nonpolar_polar = 0
     self.nonpolar_nonpolar = 0
     self.unk_contact = 0
     
     # ligxyz_proxyz xyz coordinates unique for every atom, best way to collect unique contacts made
     self.uniq_contact_list = []
     
     for uniq_lig_name in self.ligand.keys():
         # add pdb name and ligand name to list
         self.CC_per_lig_pdb_names.append( self.name )
         self.CC_per_lig_lig_names.append( uniq_lig_name )
         self.CC_per_lig_lig_atms.append( len( self.ligand[ uniq_lig_name ] ) )
         self.CC_per_lig_activesite_atms.append( len( self.activesite_lig_pro_atoms_dict[ uniq_lig_name ] ) )
         
         # make empty counters - used for counting contacts per ligand
         lig_polar_polar = 0
         lig_polar_nonpolar = 0
         lig_nonpolar_polar = 0
         lig_nonpolar_nonpolar = 0
         lig_unk_contact = 0
         
         # for every ligand residue
         for lig_pdb_line in self.ligand[ uniq_lig_name ]:
             # get ligand atom xyz
             x_lig = lig_pdb_line.x_coord
             y_lig = lig_pdb_line.y_coord
             z_lig = lig_pdb_line.z_coord
             lig_xyz = [ x_lig, y_lig, z_lig ]
             lig_xyz_str = str( x_lig ) + '_' + str( y_lig ) + '_' + str( z_lig )
             
             for pro_pdb_line in self.activesite_lig_pro_atoms_dict[ uniq_lig_name ]:
                 # get protein atom xyz
                 x_pro = pro_pdb_line.x_coord
                 y_pro = pro_pdb_line.y_coord
                 z_pro = pro_pdb_line.z_coord
                 pro_xyz = [ x_pro, y_pro, z_pro ]
                 pro_xyz_str = str( x_pro ) + '_' + str( y_pro ) + '_' + str( z_pro )
                 
                 # check atomic distance
                 contact_distance = calc_distance( lig_xyz, pro_xyz )
                 if contact_distance < cutoff:
                     # check to see that this contact has not yet been counted
                     uniq_contact = lig_xyz_str + '.' + pro_xyz_str
                     if uniq_contact not in self.uniq_contact_list:
                         # append unique contact to list
                         self.uniq_contact_list.append( uniq_contact )
                         
                         # check contact type
                         if lig_pdb_line.element in polar_atoms or lig_pdb_line.element in metal_atoms:
                             # polar polar
                             if pro_pdb_line.element in polar_atoms or pro_pdb_line.element in metal_atoms:
                                 lig_polar_polar += 1
                                 
                             # polar nonpolar
                             elif pro_pdb_line.element in nonpolar_atoms:
                                 lig_polar_nonpolar += 1
                                
                             # unknown
                             else:
                                 lig_unk_contact += 1
                                
                         elif lig_pdb_line.element in nonpolar_atoms:
                             # nonpolar polar
                             if pro_pdb_line.element in polar_atoms or pro_pdb_line.element in metal_atoms:
                                 lig_nonpolar_polar += 1
                                
                             # nonpolar nonpolar
                             elif pro_pdb_line.element in nonpolar_atoms:
                                 lig_nonpolar_nonpolar += 1
                                 
                             # unknown
                             else:
                                 lig_unk_contact += 1
                                
                         # both unknown
                         else:
                             lig_unk_contact += 1
                             
         # append this info to the per ligand data frame lists
         self.CC_per_lig_pp_contacts.append( lig_polar_polar )
         self.CC_per_lig_pn_contacts.append( lig_polar_nonpolar )
         self.CC_per_lig_np_contacts.append( lig_nonpolar_polar )
         self.CC_per_lig_nn_contacts.append( lig_nonpolar_nonpolar )
         self.CC_per_lig_unk_contacts.append( lig_unk_contact )
         
         # add the counts for this particular ligand to the total count
         self.polar_polar += lig_polar_polar
         self.polar_nonpolar += lig_polar_nonpolar
         self.nonpolar_polar += lig_nonpolar_polar
         self.nonpolar_nonpolar += lig_nonpolar_nonpolar
         self.unk_contact += lig_unk_contact
         
         
     # store all data in global list
     # because if it got here, all of the data existed
     self.CC_pdb_names.append( self.name )
     self.CC_lig_atms.append( self.num_lig_atoms )
     self.CC_activesite_atms.append( self.num_activesite_atms )
     self.CC_pp_contacts.append( self.polar_polar )
     self.CC_pn_contacts.append( self.polar_nonpolar )
     self.CC_np_contacts.append( self.nonpolar_polar )
     self.CC_nn_contacts.append( self.nonpolar_nonpolar )
     self.CC_unk_contacts.append( self.unk_contact )
     
     return True
コード例 #7
0
 def goto(self, next_city):
     here = self.city_map.here
     self.meter += calc_distance(here["X"], here["Y"], next_city["X"],
                                 next_city["Y"])
     self.city_map.here = next_city