コード例 #1
0
def visualizeDense(IM1_PATH, IM2_PATH, TEMPLE_CORRS, F, K1, K2):

    fig = plt.figure()
    ax = Axes3D(fig)
    # ax.set_xlim/set_ylim/set_zlim/
    # ax.set_aspect('equal')
    # may be useful
    # you'll want a roughly cubic meter
    # around the center of mass
    # Define pts and ims
    '''
    SAME SHIT EXCEPT at this location (C)
    '''
    from scipy import io as Mat
    corrs = Mat.loadmat(TEMPLE_CORRS)
    pts = np.concatenate([corrs['x1'], corrs['y1']], axis=1)
    from skimage import io as Im
    im1, im2 = Im.imread(IM1_PATH), Im.imread(IM2_PATH)

    # Use the epipolarCorrespondence function from before to compute the new points
    #new_pts = np.zeros([len(pts)], dtype=np.ndarray)
    new__pts = np.zeros([len(pts)], dtype=np.ndarray)
    new_pts = []
    for i in range(0, len(pts), 1):
        x1, y1 = int(corrs['x1'][i]), int(corrs['y1'][i])
        print(epipolarCorrespondence(im1, im2, F, x1, y1))
        x, y = epipolarCorrespondence(im1, im2, F, x1, y1)
        new_pts.append([x, y])
        new__pts[i] = [epipolarCorrespondence(im1, im2, F, x1, y1)]

    # From run_q3, triangulate the essential matrix (verbatim code from run_q3.py)
    E = essentialMatrix(F, K1, K2)
    E = E / E[2, 2]
    M2s = camera2(E)
    #print (new_pts)

    # Q3.2 / 3.3
    C1 = np.hstack([np.eye(3), np.zeros((3, 1))])
    new_pts = np.array(new_pts)
    for C2 in M2s:
        P, err = triangulate(K1.dot(C1), pts, K2.dot(C2), new_pts)
        if (P.min(0)[2] > 0):
            break
    kc1, kc2 = np.dot(K1, C1), np.dot(K2, C2)
    scipy.io.savemat('q4_2.mat', {
        'F': F,
        'M1': C1,
        'M2': C2,
        'C1': kc1,
        'C2': kc2
    })
    ax.scatter(P[:, 0], P[:, 1], P[:, 2])
    plt.show()
    print('M2: ' + str(C2))
    print('C2: ' + str(np.dot(K2, C2)))

    return
コード例 #2
0
ファイル: q4.py プロジェクト: nibivid/computer-vision
def visualizeDense(IM1_PATH, IM2_PATH, TEMPLE_CORRS, F, K1, K2):
    fig = plt.figure()
    ax = Axes3D(fig)

    # load image and pts pairs
    im1 = skimage.io.imread(IM1_PATH)
    im2 = skimage.io.imread(IM2_PATH)
    corrs = scipy.io.loadmat(TEMPLE_CORRS)

    # make pts1
    x1 = []
    y1 = []
    for x in range(im1.shape[1]):
        for y in range(im2.shape[0]):
            if np.mean(im1[y, x, :] > 100):
                x1.append(x)
                y1.append(y)
    pts1 = np.stack([x1, y1], axis=1)  # (num, 2)

    # compute F and x2,y2
    pts2 = []
    for idx in range(len(x1)):
        x2, y2 = epipolarCorrespondence(im1, im2, F, int(x1[idx]),
                                        int(y1[idx]))
        pts2.append([x2, y2])
    pts2 = np.array(pts2)
    # pdb.set_trace()

    # compute E and triangulate
    E = essentialMatrix(F, K1, K2)
    E = E / E[2, 2]
    M2s = camera2(E)
    C1 = np.hstack([np.eye(3), np.zeros((3, 1))])
    # print(M2s)
    for C2 in M2s:
        P, err = triangulate(K1.dot(C1), pts1, K2.dot(C2), pts2)
        if (P.min(0)[2] > 0):
            break
    scipy.io.savemat('q4_3.mat', {
        'F': F,
        'M1': C1,
        'M2': C2,
        'C1': np.dot(K1, C1),
        'C2': np.dot(K2, C2)
    })
    ax.scatter(P[:, 0], P[:, 1], P[:, 2])
    plt.show()
    print('M2')
    print(C2)
    print('C2')
    print(np.dot(K2, C2))
    return
コード例 #3
0
ファイル: q4.py プロジェクト: nibivid/computer-vision
def visualize(IM1_PATH, IM2_PATH, TEMPLE_CORRS, F, K1, K2):
    fig = plt.figure()
    ax = Axes3D(fig)
    # ax.set_xlim/set_ylim/set_zlim/
    # ax.set_aspect('equal')
    # may be useful
    # you'll want a roughly cubic meter
    # around the center of mass

    # load image and pts pairs
    im1 = skimage.io.imread(IM1_PATH)
    im2 = skimage.io.imread(IM2_PATH)
    corrs = scipy.io.loadmat(TEMPLE_CORRS)
    x1 = corrs['x1']
    y1 = corrs['y1']
    pts1 = np.concatenate([x1, y1], axis=1)  # (num, 2)

    # compute F and x2,y2
    pts2 = []
    for idx in range(len(x1)):
        x2, y2 = epipolarCorrespondence(im1, im2, F, int(x1[idx]),
                                        int(y1[idx]))
        pts2.append([x2, y2])
    pts2 = np.array(pts2)
    # pdb.set_trace()

    # compute E and triangulate
    E = essentialMatrix(F, K1, K2)
    E = E / E[2, 2]
    pdb.set_trace()
    M2s = camera2(E)
    C1 = np.hstack([np.eye(3), np.zeros((3, 1))])
    # print(M2s)
    for C2 in M2s:
        P, err = triangulate(K1.dot(C1), pts1, K2.dot(C2), pts2)
        if (P.min(0)[2] > 0):
            break
    scipy.io.savemat('q4_2.mat', {
        'F': F,
        'M1': C1,
        'M2': C2,
        'C1': np.dot(K1, C1),
        'C2': np.dot(K2, C2)
    })
    ax.scatter(P[:, 0], P[:, 1], P[:, 2])
    plt.show()
    print('M2')
    print(C2)
    print('C2')
    print(np.dot(K2, C2))
コード例 #4
0
#intrin = scipy.io.loadmat(INTRINS) #we wish
import h5py
with h5py.File(INTRINS, 'r') as f:
    K1 = np.array(f['K1']).T
    K2 = np.array(f['K2']).T

F = eightpoint(pts1, pts2, max(im1.shape))
F = F / F[2, 2]
print('F')
print(F)

E = essentialMatrix(F, K1, K2)
E = E / E[2, 2]
print('E')
print(E)
M2s = camera2(E)

# Q3.2 / 3.3
C1 = np.hstack([np.eye(3), np.zeros((3, 1))])
print(M2s)
for C2 in M2s:
    P, err = triangulate(K1.dot(C1), pts1, K2.dot(C2), pts2)
    if (P.min(0)[2] > 0):
        # we're the right one!
        scipy.io.savemat('q3_3.mat', {'M2':C2, 'C2':np.dot(K2,C2), \
                        'p1':pts1, 'p2':pts2, 'P':P})
        break
print('M2')
print(C2)
print('C2')
print(np.dot(K2, C2))
コード例 #5
0
def visualize(IM1_PATH,IM2_PATH,TEMPLE_CORRS,F,K1,K2):
    
    fig = plt.figure()
#    ax = Axes3D(fig)
    ax = fig.add_subplot(111, projection='3d')
    # ax.set_xlim/set_ylim/set_zlim/
    # ax.set_aspect('equal')
    # may be useful
    # you'll want a roughly cubic meter
    # around the center of mass
    im1 = skimage.io.imread(IM1_PATH)
    im2 = skimage.io.imread(IM2_PATH)
    im1 = rgb2gray(im1)
    im2 = rgb2gray(im2)
    
    coor = scipy.io.loadmat(TEMPLE_CORRS)
    x1 = coor['x1']
    y1 = coor['y1']
    pts1 = np.hstack((x1,y1))
    
    pts2 = []
    x2 = np.zeros((np.shape(x1)[0]))
    y2 = np.zeros((np.shape(y1)[0]))
    for i in range(np.shape(x1)[0]):
        p2e = epipolarCorrespondence(im1, im2, F, pts1[i,0], pts1[i,1])
        pts2.append(p2e)
    pts2 = np.array(pts2)
   
    
    # M1 = [I|0];
    M1 = np.zeros((3,4))
    M1[0,0] = 1
    M1[1,1] = 1
    M1[2,2] = 1
    C1 = K1 @ M1
    # M2 = [R|t];
    #Go through 4 M2 and store the outputs coor
    E = essentialMatrix(F,K1,K2)
    M2e = camera2(E)
    P = np.zeros((np.size(x1),3))
    err = np.zeros((4,1))
    z_position = np.zeros((4,1))
    #find thr posotive Z coor
    for i in range (4):
        C2 = K2 @ M2e[i,:,:]
        p, err = triangulate( C1, pts1, C2, pts2 )
        if (p[:,2]>0).all():
            P = p
            M2 = M2e[i,:,:]
#        P_total[:,:,i] = P
#        idx = np.where(P[:,2]>0)
#        z_position[i,:] = length(idx)
#    correct = np.where(z_position == np.size(P,0))
    
    PX = P[:,0]
    PY = P[:,1]
    PZ = P[:,2]
        
    ax.scatter(PX, PY, PZ, c='blue', marker = 'o',s=3)
#    ax.set_aspect('equal') 
    ax.set_xlabel('X Label')
    ax.set_ylabel('Y Label')
    ax.set_zlabel('Z Label')

    plt.show()
    scipy.io.savemat('q4_2.mat', {'M1':M1,'M2':M2,'C1':C1,'C2':C2,})
コード例 #6
0
def visualizeDense(IM1_PATH,IM2_PATH,TEMPLE_CORRS,F,K1,K2):
    fig = plt.figure()
#    ax = Axes3D(fig)
    ax = fig.add_subplot(111, projection='3d')
    # ax.set_xlim/set_ylim/set_zlim/
    # ax.set_aspect('equal')
    # may be useful
    # you'll want a roughly cubic meter
    # around the center of mass
    im1 = skimage.io.imread(IM1_PATH)
    im2 = skimage.io.imread(IM2_PATH)
    im1 = rgb2gray(im1)
    im2 = rgb2gray(im2)
    pts1 = []
    pts2 = []

#    for i in range(np.shape(im1)[0]):
#        for j in range(np.shape(im1)[1]):
#            a = [i,j]
#            pts1.append(a)
    npoint = 150000
    randomIdx_x = np.random.randint(5,635,npoint) 
    randomIdx_y = np.random.randint(5,475,npoint) 
    pts1 = []
    for i in range(npoint):
        a = np.array([randomIdx_x[i],randomIdx_y[i]])
        pts1.append(a)
    pts1 = np.array(pts1)
   
    for i in range(np.shape(pts1)[0]):
        p2e = epipolarCorrespondence(im1, im2, F, pts1[i,0], pts1[i,1])
        pts2.append(p2e)
    pts2 = np.array(pts2)
   
    
    # M1 = [I|0];
    M1 = np.zeros((3,4))
    M1[0,0] = 1
    M1[1,1] = 1
    M1[2,2] = 1
    C1 = K1 @ M1
    # M2 = [R|t];
    #Go through 4 M2 and store the outputs coor
    E = essentialMatrix(F,K1,K2)
    M2e = camera2(E)
    P = np.zeros((np.shape(pts1)[0],3))
    err = np.zeros((4,1))
    z_position = np.zeros((4,1))
    #find thr posotive Z coor
    for i in range (4):
        C2 = K2 @ M2e[i,:,:]
        p, err = triangulate( C1, pts1, C2, pts2 )
        if (p[:,2]>0).all():
            P = p
            M2 = M2e[i,:,:]
#        P_total[:,:,i] = P
#        idx = np.where(P[:,2]>0)
#        z_position[i,:] = length(idx)
#    correct = np.where(z_position == np.size(P,0))
    
    PX = P[:,0]
    PY = P[:,1]
    PZ = P[:,2]
        
    ax.scatter(PX, PY, PZ, c='blue', marker = 'o', s = 0.01)
#    ax.set_aspect('equal') 
    ax.set_xlabel('X Label')
    ax.set_ylabel('Y Label')
    ax.set_zlabel('Z Label')
    ax.set_zlim(3.70,4.00)
    plt.show()