コード例 #1
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
 def testGetLoadsData(self):
     stepsize = timedelta(minutes=15)
     loads = getLoadsData(
         self.dataFile, constructTimeStamps(self.start, self.end, stepsize))
     self.assertEqual(
         len(constructTimeStamps(self.start, self.end, stepsize)),
         len(loads))
     [self.assertGreaterEqual(load, 0) for load in loads]
コード例 #2
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
 def testGetLoadsData(self):
     stepsize = timedelta(minutes=15)
     loads = getPecanstreetData(
         self.dataFile,
         self.timeHeader,
         self.dataid,
         self.column,
         constructTimeStamps(self.start, self.end, stepsize),
         timedelta(days=self.offset),
     )
     self.assertEqual(
         len(constructTimeStamps(self.start, self.end, stepsize)),
         len(loads))
     [self.assertGreaterEqual(load, 0) for load in loads]
コード例 #3
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
 def testGetNinjaPvFile(self):
     data = getNinja(
         self.pvFile,
         constructTimeStamps(self.start, self.end, timedelta(hours=1)))
     self.assertEqual(len(data), 23)
     for electricity in data:
         self.assertGreaterEqual(electricity, 0)
コード例 #4
0
def getPredictedPVValue(pvValue, timestamps, delta):
    config_main = ForecastConfig()
    config_pv = ForecastPvConfig(config_main)

    config_main.TIMESTAMPS = constructTimeStamps(
        datetime.strptime(config_pv.BEGIN, "20%y-%m-%d %H:%M:%S"),
        datetime.strptime(config_pv.END, "20%y-%m-%d %H:%M:%S"),
        datetime.strptime(config_pv.STEP_SIZE, "%H:%M:%S") -
        datetime.strptime("00:00:00", "%H:%M:%S"),
    )
    _, endValidation = get_split_indexes(config_main)
    # we drop the year
    a = datetime.strptime(timestamps[0].strftime("%m-%d"), "%m-%d")
    b = datetime.strptime(
        config_main.TIMESTAMPS[endValidation].strftime("%m-%d"), "%m-%d")
    assert (a - b).days >= 0

    df = addMinutes(pvValue)
    df = addMonthOfYear(df)  # , timestamps)
    # datas are normalized
    scaler = joblib.load(config_pv.MODEL_FILE_SC)
    print(scaler.data_max_)
    df = scaler.transform(df)

    x = np.empty(
        (len(df) - config_pv.LOOK_BACK, config_pv.LOOK_BACK, df.shape[1]))
    for i in range(len(df) - config_pv.LOOK_BACK):
        x[i] = df[i:i + config_pv.LOOK_BACK, :]

    model = loadModel(config_pv)
    res = model.predict(x)
    res = invertScaler(res, scaler)

    return res, config_pv.LOOK_BACK, config_pv.OUTPUT_SIZE
コード例 #5
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
    def testGetPriceDataDownsample(self):
        stepsize = timedelta(hours=2)
        prices = getPriceData(
            "./sample/pecan-iso_neiso-day_ahead_lmp_avg-201901010000-201902010000.csv",
            constructTimeStamps(self.start, self.end, stepsize),
            timedelta(days=self.offset),
            self.constantPrice,
        )
        self.assertEqual(
            len(constructTimeStamps(self.start, self.end, stepsize)),
            len(prices))
        [self.assertGreaterEqual(price_n, 0) for price_n in prices]

        self.assertAlmostEqual(prices[0],
                               (25.308 + 20.291) / 1000 + self.constantPrice)
        self.assertAlmostEqual(prices[-1],
                               (24.2 + 23.417) / 1000 + self.constantPrice)
コード例 #6
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
 def testGetLoadsDataOversample(self):
     stepsize = timedelta(minutes=1)
     loads = getLoadsData(
         self.dataFile, constructTimeStamps(self.start, self.end, stepsize))
     self.assertEqual(len(loads), 22 * 60 + 1)
     self.assertEqual(loads[0], 2.444)
     for index in range(14):
         self.assertEqual(loads[index], loads[index + 1])
コード例 #7
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
 def testGetNinjaPvApi(self):
     try:
         metadata, data = getNinjaPvApi(
             52.5170,
             13.3889,
             constructTimeStamps(self.start, self.end, timedelta(hours=1)),
         )
         self.assertEqual(len(data), 24)
     except NetworkException:
         self.assertTrue(True)
コード例 #8
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
 def testGetLoadsDataDownsample(self):
     stepsize = timedelta(hours=2)
     loads = getPecanstreetData(
         self.dataFile,
         self.timeHeader,
         self.dataid,
         self.column,
         constructTimeStamps(self.start, self.end, stepsize),
         timedelta(days=self.offset),
     )
     self.assertEqual(len(loads), 2)
     self.assertAlmostEqual(loads[0], 1.071375)  # 1.064125)
     self.assertAlmostEqual(loads[1], 1.22133334)  # 1.206375)
コード例 #9
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
 def testGetLoadsDataOversample(self):
     stepsize = timedelta(minutes=1)
     loads = getPecanstreetData(
         self.dataFile,
         self.timeHeader,
         self.dataid,
         self.column,
         constructTimeStamps(self.start, self.end, stepsize),
         timedelta(days=self.offset),
     )
     self.assertEqual(len(loads), 3 * 60 + 1)
     self.assertAlmostEqual(loads[0], 0.909)  # 0.833 )
     for index in range(14):
         self.assertEqual(loads[index], loads[index + 1])
コード例 #10
0
    def __init__(self):
        self.SEED = 15

        self.BEGIN = "2019-05-01 00:00:00"
        self.END = "2019-10-31 23:45:00"
        self.STEPSIZE = "00:30:00"
        self.TIMESTAMPS = constructTimeStamps(
            datetime.strptime(self.BEGIN, "20%y-%m-%d %H:%M:%S"),
            datetime.strptime(self.END, "20%y-%m-%d %H:%M:%S"),
            datetime.strptime(self.STEPSIZE, "%H:%M:%S")
            - datetime.strptime("00:00:00", "%H:%M:%S"),
        )
        self.OUTPUT_FOLDER = ""
        self.TRAIN_FRACTION = 0.6
        self.VALIDATION_FRACTION = (1 - self.TRAIN_FRACTION) / 2
コード例 #11
0
def main(argv):
    config = ForecastLoadConfig()

    timestamps = constructTimeStamps(
        datetime.strptime(config.BEGIN, "20%y-%m-%d %H:%M:%S"),
        datetime.strptime(config.END, "20%y-%m-%d %H:%M:%S"),
        datetime.strptime(config.STEPSIZE, "%H:%M:%S") -
        datetime.strptime("00:00:00", "%H:%M:%S"),
    )

    loadsData = getData(config, timestamps).values
    plotDay(timestamps, loadsData)

    plotPart(timestamps[:96], loadsData[:96])
    plotPart(timestamps[96 * 10:96 * 11], loadsData[96 * 10:96 * 11])
    plotPart(timestamps[96 * 100:96 * 101], loadsData[96 * 100:96 * 101])
コード例 #12
0
def getPredictedLoadValue(loadsData, timestamps, timedelta):
    config = ForecastConfig()
    loadConfig = ForecastLoadConfig()
    input_data = addMinutes(loadsData)
    input_data = add_day_of_week(input_data)

    config.TIMESTAMPS = constructTimeStamps(
        datetime.strptime(loadConfig.BEGIN, "20%y-%m-%d %H:%M:%S"),
        datetime.strptime(loadConfig.END, "20%y-%m-%d %H:%M:%S"),
        datetime.strptime(loadConfig.STEPSIZE, "%H:%M:%S") -
        datetime.strptime("00:00:00", "%H:%M:%S"),
    )
    _, endValidation = get_split_indexes(config)
    # we drop the year
    a = datetime.strptime(timestamps[0].strftime("%m-%d"), "%m-%d")
    b = datetime.strptime(config.TIMESTAMPS[endValidation].strftime("%m-%d"),
                          "%m-%d")
    assert (a - b).days >= 0

    for load in loadConfig.APPLIANCES:
        appliance_data = getPecanstreetData(
            loadConfig.DATA_FILE,
            loadConfig.TIME_HEADER,
            loadConfig.DATAID,
            load,
            timestamps,
            timedelta,
        )
        input_data = pd.concat([input_data, appliance_data], axis=1)

    scaler = joblib.load(loadConfig.MODEL_FILE_SC)
    input_data = scaler.transform(input_data)

    x = np.empty((
        len(input_data) - loadConfig.LOOK_BACK,
        loadConfig.LOOK_BACK,
        input_data.shape[1],
    ))
    for i in range(len(input_data) - loadConfig.LOOK_BACK):
        x[i] = input_data[i:i + loadConfig.LOOK_BACK, :]

    model = loadModel(loadConfig)
    res = model.predict(x)
    res = invertScaler(res, scaler)
    return res, loadConfig.LOOK_BACK, loadConfig.OUTPUT_SIZE
コード例 #13
0
def dataImport(config_main, config_pv):
    timestamps = constructTimeStamps(
        datetime.strptime(config_pv.BEGIN, "20%y-%m-%d %H:%M:%S"),
        datetime.strptime(config_pv.END, "20%y-%m-%d %H:%M:%S"),
        datetime.strptime(config_pv.STEP_SIZE, "%H:%M:%S") -
        datetime.strptime("00:00:00", "%H:%M:%S"),
    )
    # input datas : uncontrollable resource : solar production
    df = getPecanstreetData(
        config_pv.DATA_FILE,
        config_pv.TIME_HEADER,
        config_pv.DATAID,
        "solar",
        timestamps,
    )
    df = addMinutes(df)
    df = addMonthOfYear(df)

    return df, np.array(timestamps)
コード例 #14
0
def main(argv):
    config = ForecastConfig()
    pvConfig = ForecastPvConfig(config)

    config.OUTPUT_FOLDER = pvConfig.OUTPUT_FOLDER
    timestamps = constructTimeStamps(
        datetime.strptime(pvConfig.BEGIN, "20%y-%m-%d %H:%M:%S"),
        datetime.strptime(pvConfig.END, "20%y-%m-%d %H:%M:%S"),
        datetime.strptime(pvConfig.STEP_SIZE, "%H:%M:%S") -
        datetime.strptime("00:00:00", "%H:%M:%S"),
    )

    config.TIMESTAMPS = timestamps

    # input datas : uncontrollable resource : solar production
    df = getPecanstreetData(pvConfig.DATA_FILE, pvConfig.TIME_HEADER,
                            pvConfig.DATAID, "solar", timestamps)
    df = addMinutes(df)
    df = addMonthOfYear(df)

    df_train, df_validation, df_test = splitData(config, df)
    print(timestamps[len(df_validation) + len(df_train)])
    # datas are normalized
    scaler = MinMaxScaler()
    scaler.fit(df_train)
    df_train = scaler.transform(df_train)
    df_validation = scaler.transform(df_validation)
    df_test = scaler.transform(df_test)

    X, y = buildSet(df_test, pvConfig.LOOK_BACK, pvConfig.OUTPUT_SIZE)

    df_train = np.array([df_train[i, 0] for i in range(len(df_train))])
    df_validation = np.array(
        [df_validation[i, 0] for i in range(len(df_validation))])
    df_test = np.array([df_test[i, 0] for i in range(len(df_test))])

    model = loadModel(pvConfig)
    testPredictY = model.predict(X)

    import matplotlib.pyplot as plt

    plt.plot(df_test[:100])
    plt.show()
    plt.plot(y[0])
    plt.show()

    # plot_baselines(config, df_train, df_test[:96], timestamps[len(df_train):len(df_train) + 96])
    plotLSTM_Base_Real(config, df_train, testPredictY[72], "mean", y[72])
    # plotLSTM_Base_Real(config, df_train, testPredictY[0], "1step", y[0])

    print("Validation:")
    one_step_persistence_model(df_validation)
    print("Test:")
    one_step_persistence_model(df_test)

    print("Validation:")
    mean_baseline_one_day(config, df_train, df_validation)
    print("Test:")
    mean_baseline_one_day(config, df_train, df_test)
    print("Train on test and predict for Test:")
    mean_baseline_one_day(config, df_test, df_test)

    print("Validation:")
    predict_zero_one_day(config, df_validation)
    print("Test:")
    predict_zero_one_day(config, df_test)

    print("Validation:")
    predict_zero_one_step(df_validation)
    print("Test:")
    predict_zero_one_step(df_test)
コード例 #15
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
 def testGetNinjaWindFileOversample(self):
     stepsize = timedelta(minutes=1)
     data = getNinja(self.pvFile,
                     constructTimeStamps(self.start, self.end, stepsize))
     self.assertEqual(len(data), 22 * 60 + 1)
コード例 #16
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
 def testGetNinjaWindFileDownsample(self):
     stepsize = timedelta(hours=2)
     data = getNinja(self.windFile,
                     constructTimeStamps(self.start, self.end, stepsize))
     self.assertEqual(len(data), 12)
コード例 #17
0
ファイル: simple_model.py プロジェクト: j-ti/SES-House
    def __init__(self, config):
        # Global
        self.goal = Goal(config["GLOBAL"]["goal"])
        self.loc_flag = "yes" == config["GLOBAL"]["loc"]
        self.loc_lat = float(config["GLOBAL"]["lat"])
        self.loc_lon = float(config["GLOBAL"]["lon"])
        self.loadResFlag = "yes" == config["GLOBAL"]["loadResFlag"]
        self.overwrite = "yes" == config["GLOBAL"]["overwrite"]
        self.calcAllFlag = "yes" == config["GLOBAL"]["calcAllFlag"]

        # Battery init (to be moved to a initialization file)
        self.SOC_bat_min = float(config["BAT"]["SOC_bat_min"])
        self.SOC_bat_init = float(config["BAT"]["SOC_bat_init"])
        self.SOC_bat_max = float(config["BAT"]["SOC_bat_max"])
        self.E_bat_max = float(config["BAT"]["E_bat_max"])
        self.eta_bat = float(config["BAT"]["eta_bat"])
        self.P_bat_max = float(config["BAT"]["P_bat_max"])
        self.ChargeConvertLoss = float(config["BAT"]["ConvertLoss"])

        # EV init
        self.SOC_ev_min = float(config["EV"]["SOC_ev_min"])
        self.SOC_ev_init = float(config["EV"]["SOC_ev_init"])
        self.SOC_ev_max = float(config["EV"]["SOC_ev_max"])
        self.P_ev_max = float(config["EV"]["P_ev_max"])
        self.E_ev_max = float(config["EV"]["E_ev_max"])
        self.eta_ev = float(config["EV"]["eta_ev"])
        self.t_a_ev = datetime.strptime(config["EV"]["t_a_ev"], "%H:%M:%S")
        self.t_b_ev = datetime.strptime(config["EV"]["t_b_ev"], "%H:%M:%S")
        self.t_goal_ev = datetime.strptime(config["EV"]["t_goal_ev"],
                                           "%H:%M:%S")

        # verify we have enough day to build the set for the prediction
        assert (
            datetime.strptime(config["TIME"]["start"], "20%y-%m-%d %H:%M:%S") -
            datetime.strptime(config["TIME"]["startPred"],
                              "20%y-%m-%d %H:%M:%S")
        ).days >= 1, "a delay of at least 1 day is needed to predict"
        # Time frame of optimization
        self.timestamps = constructTimeStamps(
            datetime.strptime(config["TIME"]["start"], "20%y-%m-%d %H:%M:%S"),
            datetime.strptime(config["TIME"]["end"], "20%y-%m-%d %H:%M:%S"),
            datetime.strptime(config["TIME"]["stepsize"], "%H:%M:%S") -
            datetime.strptime("00:00:00", "%H:%M:%S"),
        )
        self.timestampsPredPV = constructTimeStamps(
            datetime.strptime(config["TIME"]["startPred"],
                              "20%y-%m-%d %H:%M:%S"),
            datetime.strptime(config["TIME"]["end"], "20%y-%m-%d %H:%M:%S"),
            datetime.strptime(config["TIME"]["stepsizePredPV"], "%H:%M:%S") -
            datetime.strptime("00:00:00", "%H:%M:%S"),
        )
        self.timestampsPredLoad = constructTimeStamps(
            datetime.strptime(config["TIME"]["startPred"],
                              "20%y-%m-%d %H:%M:%S"),
            datetime.strptime(config["TIME"]["end"], "20%y-%m-%d %H:%M:%S"),
            datetime.strptime(config["TIME"]["stepsizePredLoad"], "%H:%M:%S") -
            datetime.strptime("00:00:00", "%H:%M:%S"),
        )
        self.stepsize = getStepsize(self.timestamps)
        self.stepsizeHour = self.stepsize.total_seconds() / 3600
        self.stepsizeMinute = self.stepsize.total_seconds() / 60
        # we add +1 because we are between 00:00 and 23:45 so < 1 day
        self.nbDay = (datetime.strptime(
            config["TIME"]["end"], "20%y-%m-%d %H:%M:%S") - datetime.strptime(
                config["TIME"]["start"], "20%y-%m-%d %H:%M:%S")).days + 1

        # Generators
        self.P_dg_max = float(config["DIESEL"]["P_dg_max"])
        self.P_dg_min = float(config["DIESEL"]["P_dg_min"])
        self.dieselQuadraticCof = float(config["DIESEL"]["a_dg"])
        self.dieselLinearCof = float(config["DIESEL"]["b_dg"])
        self.dieselConstantCof = float(config["DIESEL"]["c_dg"])
        self.dieselFuelPrice = float(config["DIESEL"]["c_gen"])
        self.startUpCost = float(config["DIESEL"]["StartUpCost"])
        self.dieselLeastRunHour = datetime.strptime(
            config["DIESEL"]["LeastRunningTime"], "%H:%M:%S").hour
        self.dieselLeastPauseHour = datetime.strptime(
            config["DIESEL"]["LeastPauseTime"], "%H:%M:%S").hour
        self.dieselLeastRunTimestepNumber = int(
            math.ceil(self.dieselLeastRunHour / self.stepsizeHour))
        self.dieselLeastPauseTimestepNumber = int(
            math.ceil(self.dieselLeastPauseHour / self.stepsizeHour))

        self.startUpHour = datetime.strptime(config["DIESEL"]["StartUpTime"],
                                             "%H:%M:%S").hour
        self.shutDownHour = datetime.strptime(config["DIESEL"]["ShutDownTime"],
                                              "%H:%M:%S").hour
        self.shutDownTimestepNumber = int(
            math.ceil(self.shutDownHour / self.stepsizeHour))
        self.startUpTimestepNumber = int(
            math.ceil(self.startUpHour / self.stepsizeHour))
        self.deltaShutDown = self.P_dg_min / self.shutDownHour * self.stepsizeHour
        self.deltaStartUp = self.P_dg_min / self.startUpHour * self.stepsizeHour

        self.pvFile = config["PV"]["file"]
        self.pvPdct = "yes" == config["PV"]["usePredicted"]
        self.showErr = "yes" == config["GLOBAL"]["showErr"]
        self.pvScale = float(config["PV"]["scale"])
        self.windFile = config["WIND"]["file"]
        self.windScale = float(config["WIND"]["scale"])
        self.windStart = datetime.strptime(config["WIND"]["windStart"],
                                           "20%y-%m-%d %H:%M:%S")
        self.windDelta = self.windStart - datetime.strptime(
            config["TIME"]["start"], "20%y-%m-%d %H:%M:%S")
        self.pvStart = datetime.strptime(config["PV"]["pvStart"],
                                         "20%y-%m-%d %H:%M:%S")
        self.pvDelta = self.pvStart - datetime.strptime(
            config["TIME"]["start"], "20%y-%m-%d %H:%M:%S")
        self.loadsFile = config["LOADS"]["file"]
        self.loadsPdct = "yes" == config["LOADS"]["usePredicted"]
        self.loadsScale = float(config["LOADS"]["scale"])
        self.dataFile = config["DATA_PS"]["file"]
        self.dataPSLoads = "yes" == config["DATA_PS"]["loads"]
        self.dataPSPv = "yes" == config["DATA_PS"]["pv"]
        self.timeHeader = config["DATA_PS"]["timeHeader"]
        self.dataid = config["DATA_PS"]["dataid"]
        self.dataStart = datetime.strptime(config["DATA_PS"]["dataStart"],
                                           "20%y-%m-%d %H:%M:%S")
        self.dataDelta = self.dataStart - datetime.strptime(
            config["TIME"]["start"], "20%y-%m-%d %H:%M:%S")
        self.costFileGrid = config["COST"]["file_grid"]
        self.constantPrice = float(config["COST"]["constant_price"])
        self.priceDataStart = datetime.strptime(
            config["COST"]["priceDataStart"], "20%y-%m-%d %H:%M:%S")
        self.priceDataDelta = self.priceDataStart - datetime.strptime(
            config["TIME"]["start"], "20%y-%m-%d %H:%M:%S")
        self.co2Grid = float(config["CO2"]["grid_CO2"])
        self.co2Diesel = float(config["CO2"]["diesel_CO2"])
コード例 #18
0
ファイル: test_data.py プロジェクト: j-ti/SES-House
 def testGetLoadsDataDownsample(self):
     stepsize = timedelta(hours=2)
     loads = getLoadsData(
         self.dataFile, constructTimeStamps(self.start, self.end, stepsize))
     self.assertEqual(len(loads), 12)
     self.assertAlmostEqual(loads[0], 2.09075)