inputs = Input(shape=(256, 256, 3)) transform_net = TransformNet(inputs, options.conv_filters, options.num_resids) model = Model(inputs=inputs, outputs=transform_net) loss_fn = create_loss_fn(style_target, options.content_weight, options.style_weight, options.tv_weight, options.batch_size) model.compile(optimizer='adam', loss=loss_fn) if options.model_input: model.load_weights(options.model_input) gen = create_gen(options.train_path, target_size=(256, 256), batch_size=options.batch_size) if options.steps_per_epoch is None: num_samples = count_num_samples(options.train_path) options.steps_per_epoch = num_samples // options.batch_size callbacks = None if options.test: callbacks = [ OutputPreview(options.test, options.test_increment, options.test_dir) ] model.fit_generator(gen, steps_per_epoch=options.steps_per_epoch, epochs=options.epochs, callbacks=callbacks) model.save(options.model_output)
self.increment = increment self.iteration = 0 def on_batch_end(self, batch, logs={}): if (self.iteration % self.increment == 0): output_img = self.model.predict(self.test_img)[0] fname = '%d.jpg' % self.iteration out_path = os.path.join(self.preview_dir_path, fname) imsave(out_path, output_img) self.iteration += 1 gen = create_gen(TRAIN_PATH, TARGET_SIZE, BATCH_SIZE) num_samples = count_num_samples(TRAIN_PATH) steps_per_epoch = num_samples // BATCH_SIZE target_layer = 1 encoder_decoder = EncoderDecoder(target_layer=target_layer) callbacks = [ OutputPreview( encoder_decoder, r'C:\Users\MillerV\Documents\Masters CS\Machine-Learning-Group\advancedML\lab2\monkey.jpg', 5000, './preview-%d' % target_layer) ] encoder_decoder.model.fit_generator(gen, steps_per_epoch=steps_per_epoch, epochs=epochs,