コード例 #1
0
def draw_points_and_poly_interval(key_name, X, y, reg_func_interval, degree,
                                  count):
    """Draws both the points and interval poly. regression on one picture"""
    import matplotlib.pyplot as plt
    X_quad = t_l.generate_polynomials(X, degree)
    interval_values = [
        *map(lambda a: a[1], reg_func_interval.interval_values_quad_)
    ]
    plt.figure(figsize=(16, 9))
    plt.title(key_name[:-1 - key_name[::-1].find('.')] +
              '\'s Interval Regression')
    plt.xlabel('time')
    plt.ylabel(key_name)
    plt.grid(True)
    plt.scatter(X, y, color='red', label='Sample Point', linewidths=1)
    y_func = reg_func_interval.predict(X_quad)
    picture_y_min = np.amin(y_func)
    picture_y_max = np.amax(y_func)
    plt.plot(X,
             y_func,
             color='orange',
             label='degree ' + str(degree),
             linewidth=3)

    for x_interval in interval_values:
        plt.plot([x_interval, x_interval], [picture_y_min, picture_y_max],
                 color='k',
                 linewidth=1.5,
                 linestyle="--")
    plt.legend(loc='upper left')
    # plt.savefig('points_poly_' + str(count) + '.png', dpi=200)
    plt.show()
コード例 #2
0
def draw_two_value_pairs_commX(key_name_1, key_name_2, X_1, X_2, y_1, y_2,
                               reg_func_interval_1, reg_func_interval_2,
                               degree, count):
    """Combines and draws value pairs

    Args:
        key_name_1: name of the first value
        key_name_2: name of the second value
        X_1: X of the first value
        X_2: X of the second value
        y_1: y of the first value
        y_2: y of the second value
        reg_func_interval_1: functions list of the first value
        reg_func_interval_2: functions list of the second value
        degree: degree of the function now
        count: the order of data pairs used for exportation

    Returns: No return
    """
    comm_left = X_1[0] if X_1[0] > X_2[0] else X_2[0]
    comm_right = X_1[-1] if X_1[-1] < X_2[-1] else X_2[-1]
    comm_X = np.linspace(comm_left, comm_right, 1000)
    comm_X = comm_X.reshape(comm_X.shape[0], 1)
    comm_X_quad = t_l.generate_polynomials(comm_X, degree)
    y_1_func = reg_func_interval_1.predict(comm_X_quad)
    y_2_func = reg_func_interval_2.predict(comm_X_quad)

    # Displays pearson
    y_1_2_pearson_c_s = t_l.pearson_correlation_similarity(y_1_func, y_2_func)
    print(key_name_1, key_name_2)
    print('Pearson: ', y_1_2_pearson_c_s)
    print()

    import matplotlib.pyplot as plt

    plt.figure(figsize=(16, 9))
    cm = plt.cm.get_cmap('rainbow')
    z_color = np.arange(len(y_1_func))
    plt.title(key_name_1 + '  && ' + key_name_2)
    plt.xlabel(key_name_1)
    plt.ylabel(key_name_2)
    plt.grid(True)
    sc = plt.scatter(y_1_func,
                     y_2_func,
                     c=z_color,
                     s=100,
                     cmap=cm,
                     label='Sample Points',
                     alpha=.6)
    plt.legend()
    plt.colorbar(sc)
    # plt.savefig('Depth&Distance combinations_' + str(count) + '.png', dpi=200)
    plt.show()
コード例 #3
0
def draw_points_and_poly(key_name, X, y, reg_func, degree, count):
    """Draws both the data points and polynomial regression"""
    import matplotlib.pyplot as plt
    X_quad = t_l.generate_polynomials(X, degree)
    plt.figure(figsize=(16, 9))
    plt.xlabel('time')
    plt.ylabel(key_name)
    plt.grid(True)
    plt.scatter(X, y, color='red', label='Sample Point', linewidths=1)
    plt.plot(X,
             reg_func.predict(X_quad),
             color='orange',
             label='degree ' + str(degree),
             linewidth=3)
    plt.legend(loc='upper left')
    # plt.savefig('points_poly_data_1_ridge_' + str(count) + '.png', dpi=200)
    plt.show()
コード例 #4
0
def make_polynomial_fitting_tv(tv_list,
                               key_name,
                               t_comps_ratio,
                               degree=DEGREE_NOW,
                               type='linear'):
    """Calculates the functions of polynomial regression

    Args:
        tv_list: lists of data values
        key_name: the name of data value for polynomial regression
        t_comps_ratio: the ratio of compression for timestamp
        degree: the degree of polynomial regression
        type: regression type ('linear' or 'ridge')

    Returns:
        A tuple of three elements:
            First element is a consequence of X
            Second element is polynomials generated according to the degree
            Third element is a consequence of y
            Fourth element is the function of regression
    """
    pd.set_option('precision', VALUE_PRECISION)
    df_tv = pd.DataFrame(tv_list, columns=['time', key_name])
    df_tv.sort_values(by='time')
    X_col_list = list(df_tv['time'])
    y_col_list = list(df_tv[key_name])

    # Compress the value of timestamp
    X_delta_sp = X_col_list[0] / (10**t_comps_ratio)
    X_col_list_cms = [
        *map(lambda a: a / (10**t_comps_ratio) - X_delta_sp, X_col_list)
    ]

    X = np.array(X_col_list_cms).reshape(len(X_col_list_cms), 1)
    y = np.array(y_col_list).reshape(len(y_col_list), 1)
    X_quad = t_l.generate_polynomials(X, degree)
    if type == 'linear':
        lin_reg = LinearRegression()
        lin_reg.fit(X_quad, y)
        return (X, X_quad, y, lin_reg)
    elif type == 'ridge':
        clf = linear_model.Ridge(alpha=0.0001)
        clf.fit(X_quad, y)
        return (X, X_quad, y, clf)
コード例 #5
0
def make_plf_cols(tv_list,
                  key_name,
                  t_comps_ratio,
                  degree,
                  GaussFiltered=True,
                  GF_s=GAUSS_FILTER_PRECISION):
    """Conducts timestamp compression and GaussFilter on values

    Args:
        tv_list: data values
        key_name: name of this data
        t_comps_ratio: the compression ratio on timestamp
        degree: degree of polynomial
        GaussFiltered: if it is GaussFiltered
        GF_s: the precision of GaussFilter

    Returns:
        A tuple of three elements:
            First element is a consequence of X
            Second element is polynomials generated according to the degree
            Third element is a consequence of y
    """
    pd.set_option('precision', VALUE_PRECISION)
    df_tv = pd.DataFrame(tv_list, columns=['time', key_name])
    df_tv.sort_values(by='time')
    X_col_list = list(df_tv['time'])
    y_col_list = list(df_tv[key_name])
    X_delta_sp = X_col_list[0] // (10**t_comps_ratio)
    X_col_list_cms = [
        *map(lambda a: a / (10**t_comps_ratio) - X_delta_sp, X_col_list)
    ]
    X = np.array(X_col_list_cms).reshape(len(X_col_list_cms), 1)
    y = np.array(y_col_list).reshape(len(y_col_list), 1)
    X_quad = t_l.generate_polynomials(X, degree)
    if GaussFiltered:
        y_list = [item[0] for item in y]
        y_GF = filters.gaussian_filter1d(y_list, GF_s)
        return (X, X_quad, np.array(y_GF))
    else:
        return (X, X_quad, y)
コード例 #6
0
def draw_two_p_and_d_interval(key_name_1, key_name_2, X_1, X_2, y_1, y_2,
                              reg_func_interval_1, reg_func_interval_2, count,
                              dp_num_1, dp_num_2, degree):
    """Displays data points, polynomials, derivatives and cross-zero points of derivatives of two data values

    Args:
        key_name_1: name of the first value
        key_name_2: name of the second value
        X_1: X of the first value
        X_2: X of the second value
        y_1: y of the first value
        y_2: y of the second value
        reg_func_interval_1: functions list of the first value
        reg_func_interval_2: functions list of the second value
        count: the order of data pairs used for exportation
        dp_num_1: number of displayed cross_zero_points of the first value
        dp_num_2: number of displayed cross_zero_points of the second value
        degree: degree of the function now

    Returns: No return
    """
    def draw_cross_zero_lines(plt, cross_zero_points, y_max, y_min):
        """Displays cross-zero points by drawing vertical lines crossing cross-zero points"""
        has_draw_maximum = False
        has_draw_minimum = False
        for index, item in enumerate(cross_zero_points):
            if item[3] == 'maximum':
                color_now = 'blue'
                plt.scatter([
                    item[0],
                ], [
                    item[1],
                ], 30, color=color_now)
                plt.annotate('%.3f' % item[0],
                             color=color_now,
                             xy=(item[0], item[1]),
                             xycoords='data',
                             xytext=(+10, +10),
                             textcoords='offset points',
                             fontsize=10,
                             arrowprops=dict(arrowstyle="->",
                                             connectionstyle="arc3,rad=.2",
                                             color=color_now))
                if not has_draw_maximum:
                    plt.plot([item[0], item[0]], [y_max, y_min],
                             color=color_now,
                             label='cz_maximum',
                             linewidth=1.5,
                             linestyle="--")
                else:
                    plt.plot([item[0], item[0]], [y_max, y_min],
                             color=color_now,
                             linewidth=1.5,
                             linestyle="--")
                has_draw_maximum = True
            elif item[3] == 'minimum':
                color_now = 'g'
                plt.scatter([
                    item[0],
                ], [
                    item[1],
                ], 30, color=color_now)
                plt.annotate('%.3f' % item[0],
                             color=color_now,
                             xy=(item[0], item[1]),
                             xycoords='data',
                             xytext=(+10, +10),
                             textcoords='offset points',
                             fontsize=10,
                             arrowprops=dict(arrowstyle="->",
                                             connectionstyle="arc3,rad=.2",
                                             color=color_now))
                if not has_draw_minimum:
                    plt.plot([item[0], item[0]], [y_max, y_min],
                             color=color_now,
                             label='cz_minimum',
                             linewidth=1.5,
                             linestyle="--")
                else:
                    plt.plot([item[0], item[0]], [y_max, y_min],
                             color=color_now,
                             linewidth=1.5,
                             linestyle="--")
                has_draw_minimum = True
        plt.legend(loc='lower right')

    X_quad_1 = t_l.generate_polynomials(X_1, degree)
    X_1_left, X_1_right = (X_1[0], X_1[-1])
    X_quad_1_d = t_l.generate_polynomials(X_1, degree - 1)
    X_quad_2 = t_l.generate_polynomials(X_2, degree)
    X_2_left, X_2_right = (X_2[0], X_2[-1])
    X_quad_2_d = t_l.generate_polynomials(X_2, degree - 1)
    y_1_func = reg_func_interval_1.predict(X_quad_1)
    y_1_range = np.amax(y_1_func) - np.amin(y_1_func)
    y_1_max, y_1_min = (np.amax(y_1_func) + 0.08 * y_1_range,
                        np.amin(y_1_func) - 0.08 * y_1_range)
    y_2_func = reg_func_interval_2.predict(X_quad_2)
    y_2_range = np.amax(y_2_func) - np.amin(y_2_func)
    y_2_max, y_2_min = (np.amax(y_2_func) + 0.08 * y_2_range,
                        np.amin(y_2_func) - 0.08 * y_2_range)

    # Uses cross-zero points to find extremes of functions
    y_d_dp_1 = reg_func_interval_1.predict_d(X_quad_1_d)
    y_1_d_range = np.amax(y_d_dp_1) - np.amin(y_d_dp_1)
    y_1_d_max, y_1_d_min = (np.amax(y_d_dp_1) + 0.08 * y_1_d_range,
                            np.amin(y_d_dp_1) - 0.08 * y_1_d_range)
    cross_zero_points_1 = t_l.calculate_cross_zero(X_1, y_d_dp_1)
    cross_zero_points_1_sorted = sorted(cross_zero_points_1,
                                        key=lambda a: a[4],
                                        reverse=True)
    y_d_dp_2 = reg_func_interval_2.predict_d(X_quad_2_d)
    y_2_d_range = np.amax(y_d_dp_2) - np.amin(y_d_dp_2)
    y_2_d_max, y_2_d_min = (np.amax(y_d_dp_2) + 0.08 * y_2_d_range,
                            np.amin(y_d_dp_2) - 0.08 * y_2_d_range)
    cross_zero_points_2 = t_l.calculate_cross_zero(X_2, y_d_dp_2)
    cross_zero_points_2_sorted = sorted(cross_zero_points_2,
                                        key=lambda a: a[4],
                                        reverse=True)

    # Drawing part
    import matplotlib.pyplot as plt
    fig, axes = plt.subplots(4, 1, sharex=True, figsize=(18, 10))
    fig.suptitle(key_name_1[:-1 - key_name_1[::-1].find('.')] + '  && ' +
                 key_name_2[:-1 - key_name_2[::-1].find('.')])
    axes[0].scatter(X_1, y_1, color='red', label='Sample Point', linewidths=1)
    axes[0].set_ylabel(key_name_1[:key_name_1.find('.')])
    axes[0].grid(True)
    axes[0].axis([X_1_left, X_1_right, y_1_min, y_1_max])
    axes[0].plot(X_1, y_1_func, color='orange', linewidth=3)
    axes[2].set_ylabel('Derivative 1st.')
    axes[2].grid(True)
    axes[2].axis([X_1_left, X_1_right, y_1_d_min, y_1_d_max])
    axes[2].plot(X_1, y_d_dp_1, color='c', linewidth=3)
    axes[2].plot(X_1, [0] * len(X_1), color='black', linewidth=1)

    # Draws cross-zero data points
    dp_cross_zero_points_1 = cross_zero_points_1_sorted[:dp_num_1] if len(
        cross_zero_points_1_sorted) > dp_num_1 else cross_zero_points_1_sorted
    draw_cross_zero_lines(axes[2], dp_cross_zero_points_1, y_1_d_max,
                          y_1_d_min)
    fig.subplots_adjust(hspace=0.1)
    plt.setp([a.get_xticklabels() for a in fig.axes], visible=True)
    plt.subplot(4, 1, 2)
    plt.scatter(X_2, y_2, color='red', label='Sample Point', linewidths=1)
    plt.ylabel(key_name_2[:key_name_2.find('.')])
    plt.grid(True)
    plt.axis([X_2_left, X_2_right, y_2_min, y_2_max])
    plt.plot(X_2, y_2_func, color='orange', linewidth=3)
    plt.subplot(4, 1, 4)
    plt.ylabel('Derivative 2nd.')
    plt.grid(True)
    plt.axis([X_2_left, X_2_right, y_2_d_min, y_2_d_max])
    plt.plot(X_2, y_d_dp_2, color='c', linewidth=3)
    plt.plot(X_2, [0] * len(X_2), color='black', linewidth=1)
    dp_cross_zero_points_2 = cross_zero_points_2_sorted[:dp_num_2] if len(
        cross_zero_points_2_sorted) > dp_num_2 else cross_zero_points_2_sorted
    draw_cross_zero_lines(plt, dp_cross_zero_points_2, y_2_d_max, y_2_d_min)
    plt.show()
コード例 #7
0
def draw_two_p_and_d_interval_commX(key_name_1, key_name_2, X_1, X_2, y_1, y_2,
                                    reg_func_interval_1, reg_func_interval_2,
                                    degree, count):
    """Uses a threshold of Pearson's r to filter correlated data pairs
       Displays both their polynomial functions and derivative functions

    Args:
        key_name_1: name of the first value
        key_name_2: name of the second value
        X_1: X of the first value
        X_2: X of the second value
        y_1: y of the first value
        y_2: y of the second value
        reg_func_interval_1: functions list of the first value
        reg_func_interval_2: functions list of the second value
        degree: degree of the function now
        count: the order of data pairs used for exportation

    Returns: No return
    """

    # Finds comm_x for one comparison
    comm_left = X_1[0] if X_1[0] > X_2[0] else X_2[0]
    comm_right = X_1[-1] if X_1[-1] < X_2[-1] else X_2[-1]
    comm_X = np.linspace(comm_left, comm_right, 3000)
    comm_X = comm_X.reshape(comm_X.shape[0], 1)
    comm_X_quad = t_l.generate_polynomials(comm_X, degree)
    comm_X_quad_d = t_l.generate_polynomials(comm_X, degree - 1)
    y_1_func = reg_func_interval_1.predict(comm_X_quad)
    y_2_func = reg_func_interval_2.predict(comm_X_quad)
    y_d_dp_1 = reg_func_interval_1.predict_d(comm_X_quad_d)
    y_d_dp_2 = reg_func_interval_2.predict_d(comm_X_quad_d)

    # Displays pearson
    y_1_2_pearson_c_s = t_l.pearson_correlation_similarity(y_1_func, y_2_func)
    y_d_1_2_pearson_c_s = t_l.pearson_correlation_similarity(
        y_d_dp_1, y_d_dp_2)
    if abs(y_1_2_pearson_c_s) >= PEARSON_THRESHOLD:
        print(key_name_1, key_name_2)
        print('Pearson of y:', y_1_2_pearson_c_s)
        print('Pearson of y_d:', y_d_1_2_pearson_c_s)
        print()
    else:
        return 1

    # Drawing part
    import matplotlib.pyplot as plt
    fig, axes = plt.subplots(4, 1, sharex=True, figsize=(16, 9))
    fig.suptitle(key_name_1[:-1 - key_name_1[::-1].find('.')] + '  && ' +
                 key_name_2[:-1 - key_name_2[::-1].find('.')])
    plt.xlabel('time')
    axes[0].set_ylabel(key_name_1[key_name_1.find('.') +
                                  1:key_name_1.rfind('.')])
    axes[0].grid(True)
    axes[0].plot(comm_X,
                 y_1_func,
                 color='orange',
                 label='interval regression',
                 linewidth=3)
    axes[0].legend(loc='upper right')
    axes[1].set_ylabel(key_name_2[key_name_2.find('.') +
                                  1:key_name_2.rfind('.')])
    axes[1].grid(True)
    axes[1].plot(comm_X,
                 y_2_func,
                 color='orange',
                 label='interval regression',
                 linewidth=3)
    axes[1].legend(loc='upper right')
    axes[2].set_ylabel('Derivative 1st.')
    axes[2].grid(True)
    axes[2].plot(comm_X, y_d_dp_1, color='c', label='derivatives', linewidth=3)
    axes[2].plot(comm_X, [0] * len(comm_X), color='black', linewidth=1)
    axes[2].legend(loc='upper right')
    axes[3].set_ylabel('derivative 2nd.')
    axes[3].grid(True)
    axes[3].plot(comm_X, y_d_dp_2, color='c', label='derivatives', linewidth=3)
    axes[3].plot(comm_X, [0] * len(comm_X), color='black', linewidth=1)
    axes[3].legend(loc='upper right')
    # plt.savefig('candidate_pairs_' + str(count) + '.png', dpi=200)
    plt.show()
コード例 #8
0
def draw_d_and_d_interval(key_name_1, key_name_2, X_1, X_2, reg_func_d_interval_1, reg_func_d_interval_2,
                          degree):
    """Displays comparison of derivatives and their cross-zero points of two data values.
       Especially, paints the cross-zero points which are close to each other to
       visualize the possibility of correlation between derivatives

    Args:
        key_name_1: name of the first value
        key_name_2: name of the second value
        X_1: X of the first value
        X_2: X of the second value
        reg_func_interval_1: functions list of the first value
        reg_func_interval_2: functions list of the second value
        degree: degree of the function now

    Returns: No return
    """

    # Finds comm_x for picture
    comm_left = X_1[0] if X_1[0]>X_2[0] else X_2[0]
    comm_right = X_1[-1] if X_1[-1]<X_2[-1] else X_2[-1]
    comm_X = np.linspace(comm_left,comm_right,5000)
    comm_X = comm_X.reshape(comm_X.shape[0], 1)
    comm_X_quad = t_l.generate_polynomials(comm_X, degree)
    comm_X_quad_d = t_l.generate_polynomials(comm_X, degree-1)

    # Uses cross-zero points to find extremes of functions
    dp_num_1 = DISPLAYED_CROSS_ZERO_NUM_1
    y_d_dp_1 = reg_func_d_interval_1.predict_d(comm_X_quad_d)
    cross_zero_points_1 = t_l.calculate_cross_zero(comm_X, y_d_dp_1)
    cross_zero_points_1_sorted = sorted(cross_zero_points_1, key=lambda a:a[4], reverse=True)
    top_X_cross_zero_list_1 = [*map(lambda a:a[0],
                                    cross_zero_points_1_sorted[:dp_num_1] \
                                        if len(cross_zero_points_1_sorted)>dp_num_1 \
                                        else cross_zero_points_1_sorted)]
    dp_num_2 = DISPLAYED_CROSS_ZERO_NUM_2
    y_d_dp_2 = reg_func_d_interval_2.predict_d(comm_X_quad_d)
    cross_zero_points_2 = t_l.calculate_cross_zero(comm_X, y_d_dp_2)
    cross_zero_points_2_sorted = sorted(cross_zero_points_2, key=lambda a:a[4], reverse=True)
    top_X_cross_zero_list_2 = [*map(lambda a:a[0],
                                    cross_zero_points_2_sorted[:dp_num_2] \
                                        if len(cross_zero_points_2_sorted)>dp_num_2 \
                                        else cross_zero_points_2_sorted)]
    total_near_count = 0
    for index_2, item_2 in enumerate(top_X_cross_zero_list_2):
        for index_1, item_1 in enumerate(top_X_cross_zero_list_1):
            if abs(item_1-item_2) <= NEAR_DISTANCE:
                if cross_zero_points_2_sorted[index_2][-1] != 'catch':
                    cross_zero_points_2_sorted[index_2] += ('catch',)
                    total_near_count += 1
                if cross_zero_points_1_sorted[index_1][-1] != 'catch':
                    cross_zero_points_1_sorted[index_1] += ('catch',)
                    total_near_count += 1
    # For debug
    # total_czp_num = len(top_X_cross_zero_list_2) + len(top_X_cross_zero_list_1)
    # print(total_near_count, total_near_count/total_czp_num)
    # print(key_name_1,key_name_2)
    # print()

    import matplotlib.pyplot as plt
    fig, axarr = plt.subplots(2, sharex=True, figsize=(16,9))

    # Plot 1
    axarr[0].set_title('derivative 1')
    axarr[0].set_xlabel('time')
    axarr[0].set_ylabel(key_name_1)
    axarr[0].grid(True)
    y_d_1_range = np.amax(y_d_dp_1) - np.amin(y_d_dp_1)
    picture_y_d_1_max = np.amax(y_d_dp_1)+0.08*y_d_1_range
    picture_y_d_1_min = np.amin(y_d_dp_1)-0.08*y_d_1_range
    axarr[0].axis([comm_left,comm_right,picture_y_d_1_min,picture_y_d_1_max])
    axarr[0].plot(comm_X, y_d_dp_1, color='c', linewidth=3)
    axarr[0].plot(comm_X, [0]*len(comm_X), color='black', linewidth=1)

    # Draws cross-zero data points
    has_draw_maximum_1 = False
    has_draw_minimum_1 = False
    for index, item in enumerate(cross_zero_points_1_sorted[:dp_num_1] \
                             if len(cross_zero_points_1_sorted)>dp_num_1 else cross_zero_points_1_sorted):
        if item[3]=='maximum':
            if item[-1] == 'catch':
                color_now = 'red'
            else:
                color_now = 'blue'
            axarr[0].scatter([item[0],],[item[1],], 30, color=color_now)
            axarr[0].annotate('%.3f' % item[0],color=color_now,
                              xy=(item[0], item[1]), xycoords='data',
                              xytext=(+10, +10), textcoords='offset points', fontsize=10,
                              arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2", color=color_now))
            if not has_draw_maximum_1:
                axarr[0].plot([item[0],item[0]],[item[1],picture_y_d_1_min], color=color_now, label='cz_maximum', linewidth=1.5, linestyle="--")
            else:
                axarr[0].plot([item[0],item[0]],[item[1],picture_y_d_1_min], color=color_now, linewidth=1.5, linestyle="--")
            has_draw_maximum_1 = True
        elif item[3]=='minimum':
            if item[-1] == 'catch':
                color_now = 'red'
            else:
                color_now = 'g'
            axarr[0].scatter([item[0],],[item[1],], 30, color=color_now)
            axarr[0].annotate('%.3f' % item[0],color=color_now,
                              xy=(item[0], item[1]), xycoords='data',
                              xytext=(+10, +10), textcoords='offset points', fontsize=10,
                              arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2", color=color_now))
            if not has_draw_minimum_1:
                axarr[0].plot([item[0],item[0]],[item[1],picture_y_d_1_min], color=color_now, label='cz_minimum', linewidth=1.5, linestyle="--")
            else:
                axarr[0].plot([item[0],item[0]],[item[1],picture_y_d_1_min], color=color_now, linewidth=1.5, linestyle="--")
            has_draw_minimum_1 = True
    axarr[0].legend(loc='lower right')

    # Plot 2
    axarr[1].set_title('derivative 2')
    axarr[1].set_xlabel('time')
    axarr[1].set_ylabel(key_name_2)
    axarr[1].grid(True)
    y_d_2_range = np.amax(y_d_dp_2) - np.amin(y_d_dp_2)
    picture_y_d_2_max = np.amax(y_d_dp_2)+0.08*y_d_2_range
    picture_y_d_2_min = np.amin(y_d_dp_2)-0.08*y_d_2_range
    axarr[1].axis([comm_left,comm_right,picture_y_d_2_min,picture_y_d_2_max])
    axarr[1].plot(comm_X, y_d_dp_2, color='c', linewidth=3)
    axarr[1].plot(comm_X, [0]*len(comm_X), color='black', linewidth=1)
    has_draw_maximum_2 = False
    has_draw_minimum_2 = False
    for index, item in enumerate(cross_zero_points_2_sorted[:dp_num_2] \
                                 if len(cross_zero_points_2_sorted)>dp_num_2 else cross_zero_points_2_sorted):
        if item[3]=='maximum':
            if item[-1] == 'catch':
                color_now = 'red'
            else:
                color_now = 'blue'
            axarr[1].scatter([item[0],],[item[1],], 30, color=color_now)
            axarr[1].annotate('%.3f' % item[0],color=color_now,
                              xy=(item[0], item[1]), xycoords='data',
                              xytext=(+10, +10), textcoords='offset points', fontsize=10,
                              arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2", color=color_now))
            if not has_draw_maximum_2:
                axarr[1].plot([item[0],item[0]],[item[1],picture_y_d_2_max], color=color_now, label='cz_maximum', linewidth=1.5, linestyle="--")
            else:
                axarr[1].plot([item[0],item[0]],[item[1],picture_y_d_2_max], color=color_now, linewidth=1.5, linestyle="--")
            has_draw_maximum_2 = True
        elif item[3]=='minimum':
            if item[-1] == 'catch':
                color_now = 'red'
            else:
                color_now = 'g'
            axarr[1].scatter([item[0],],[item[1],], 30, color=color_now)
            axarr[1].annotate('%.3f' % item[0],color=color_now,
                              xy=(item[0], item[1]), xycoords='data',
                              xytext=(+10, +10), textcoords='offset points', fontsize=10,
                              arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2", color=color_now))
            if not has_draw_minimum_2:
                axarr[1].plot([item[0],item[0]],[item[1],picture_y_d_2_max], color=color_now, label='cz_minimum', linewidth=1.5, linestyle="--")
            else:
                axarr[1].plot([item[0],item[0]],[item[1],picture_y_d_2_max], color=color_now, linewidth=1.5, linestyle="--")
            has_draw_minimum_2 = True
    axarr[1].legend(loc='lower right')
    plt.show()