コード例 #1
0
def get_data():
  X, Y = get_clouds()

  # Split the data into train and test sets
  # This lets us simulate how our model will perform in the future
  Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.33)
  return Xtrain, Xtest, Ytrain, Ytest
コード例 #2
0
def random_search():

    X, Y = get_clouds()
    X, Y = shuffle(X, Y)

    Ntrain = int(0.7 * len(X))

    Xtrain, Xtest = X[:Ntrain], X[Ntrain:]
    Ytrain, Ytest = Y[:Ntrain], Y[Ntrain:]

    M = 20
    nHidden = 2
    log_lr = -4
    log_l2 = -2
    max_tries = 30
    best_nHidden = None
    best_validation_rate = 0
    best_M = None
    best_lr = None
    best_l2 = None
    for _ in range(max_tries):
        model = ANN([M] * nHidden)
        model.fit(Xtrain,
                  Ytrain,
                  learning_rate=10**log_lr,
                  reg=10**log_l2,
                  mu=0.99,
                  epochs=3000,
                  show_fig=False)
        validation_accuracy = model.score(Xtest, Ytest)
        train_accuracy = model.score(Xtrain, Ytrain)
        print(
            f'validation_accuracy: {validation_accuracy}, train_accuracy: {train_accuracy}, setting M: {M}, nHidden: {nHidden}, lr: {log_lr}, l2: {log_l2}'
        )

        if validation_accuracy > best_validation_rate:
            best_validation_rate = validation_accuracy
            best_M = M
            best_nHidden = nHidden
            best_l2 = log_l2
            best_lr = log_lr

        # select new hyperparams
        nHidden = best_nHidden + np.random.randint(-1, 2)
        nHidden = max(1, nHidden)
        M = best_M + np.random.randint(-1, 2) * 10
        M = max(10, M)
        log_lr = best_lr + np.random.randint(-1, 2)
        log_l2 = best_l2 + np.random.randint(-1, 2)

    print(f'Best validation_accuracy: {best_validation_rate}')
    print('Best Setting:')
    print(f'Best hidden layer number: {best_nHidden}')
    print(f"Best hidden_layer_size, {best_M}")
    print(f'Best learning rate: {best_lr}')
    print(f'Best regularizations : {best_l2}')
コード例 #3
0
def main():
    X = get_clouds()
    X = shuffle(X)

    # show data
    plt.scatter(X[:, 0], X[:, 1])
    plt.show()

    model = soft_kmeans(4)
    model.fit(X, beta=1, eps=1e-3)
コード例 #4
0
def get_data():
  ### medical data
  # load the data
  # data = load_breast_cancer()
  # X, Y = data.data, data.target

  # X, Y = get_xor()
  # X, Y = get_donut()
  # X, Y = get_spiral()
  X, Y = get_clouds()

  # split the data into train and test sets
  # this lets us simulate how our model will perform in the future
  Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.33)
  return Xtrain, Xtest, Ytrain, Ytest
コード例 #5
0
def get_data():
  ### medical data
  # load the data
  # data = load_breast_cancer()
  # X, Y = data.data, data.target

  # X, Y = get_xor()
  # X, Y = get_donut()
  # X, Y = get_spiral()
  X, Y = get_clouds()

  # split the data into train and test sets
  # this lets us simulate how our model will perform in the future
  Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.33)
  return Xtrain, Xtest, Ytrain, Ytest
コード例 #6
0
def clouds():
    X, Y = get_clouds()
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.33)
    return X_train, X_test, Y_train, Y_test, 1e-3, 200
コード例 #7
0
def clouds():
  X, Y = get_clouds()
  Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.33)
  return Xtrain, Xtest, Ytrain, Ytest, linear, 1e-5, 400
コード例 #8
0
def clouds():
  X, Y = get_clouds()
  Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.33)
  return Xtrain, Xtest, Ytrain, Ytest, 1e-3, 200
def clouds():
  X, Y = get_clouds()
  Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.33)
  return Xtrain, Xtest, Ytrain, Ytest, linear, 1e-5, 500