def __init__(self): self.screen = pygame.display.set_mode(SCREEN_SIZE, 0, 32) self.cursors = [ pygame.image.load( get_file_path('img/ui/cursor.png')).convert_alpha(), pygame.image.load( get_file_path('img/ui/cursor_click.png')).convert_alpha()]
def __init__(self, fielddata): BaseModel.__init__(self) self.footholds = [] self.footholds_count = 0 self.background_img = pygame.image.load( get_file_path(fielddata['background_img'])).convert() self.tiles_img = pygame.image.load( get_file_path(fielddata['tiles_img'])).convert_alpha() for fh in fielddata['footholds']: tmp = { 'pos': fh['pos'], 'width': fh['size'][0], 'image': pygame.Surface(fh['size'], SRCALPHA)} x = 0 for t in fh['tiles']: repeat, sub_pos, rand_tile = 1, (0, 0), False if 'repeat' in t: repeat = t['repeat'] if isinstance(t['sub_pos'], list): rand_tile = True for _ in range(repeat): sub_pos = t['sub_pos'][randindex(len(t['sub_pos']))] if\ rand_tile else t['sub_pos'] x = self._build_image(tmp['image'], x, sub_pos, t['size']) self.footholds.append(tmp) self.footholds_count += 1
def runModel(STORE_PATH, model_func=build_model, EPOCHS=10000, patience=30, batch_size=5000, verbose=0, feature_func=getFeatures, validation_split=0.2, tbText=[]): configText = "EPOCHS={}, patience={}, batch_size={}, verbose={}, validation_split={}".format( EPOCHS, patience, batch_size, verbose, validation_split) tbText.append( lambda: tf.summary.text('Config', tf.convert_to_tensor(configText))) data = datautil.getData() features = feature_func() data = datautil.normalize(features, data) training, test = datautil.datasets(data, tbText=tbText) tbText.append(lambda: tf.summary.text('Features', tf.convert_to_tensor(str(features)))) x_train, y_train, x_test, y_test, x_train_ordered = getAllXYs( training, test, features) model = model_func((x_train.shape[1], )) model, bestModel = trainModel(model, x_train, y_train, STORE_PATH, EPOCHS=EPOCHS, patience=patience, batch_size=batch_size, verbose=verbose, validation_split=validation_split) lossFinalStr = util.trainingTestingLoss(model, x_test, y_test, "Final Model")[0] print(lossFinalStr) tbText.append( lambda: tf.summary.text('Testing Loss: {}'.format("Final Model"), tf.convert_to_tensor(lossFinalStr))) lossStr = util.trainingTestingLoss(bestModel, x_test, y_test, "Best Model")[0] print(lossStr) tbText.append( lambda: tf.summary.text('Testing Loss: {}'.format("Best Model"), tf.convert_to_tensor(lossStr))) test = util.generatePredictions(bestModel, test, x_test, features) test.to_csv(util.get_file_path(STORE_PATH, 'test', 'csv', 'csv')) training = util.generatePredictions(bestModel, training, x_train_ordered, features) training.to_csv(util.get_file_path(STORE_PATH, 'training', 'csv', 'csv'))
def __init__(self, source_table_batch: SourceTableBatch): self.source_table_batch = source_table_batch self.source_table = source_table_batch.source_table self.source = source_table_batch.source_table.source self.file_name = get_file_name(self.source_table_batch) self.file_location = get_file_path(self.source_table_batch) self.stage_name = config.snowflake_stage_name[self.source.source]
def __init__(self): Group.__init__(self) BaseModel.__init__(self) # load image _money_image = pygame.image.load( get_file_path('img/item/money.png')).convert_alpha() _subsurface_data = [(25, 24), (25, 24), (33, 30), (32, 31)] _y = 0 self.money_images = [] for _sub_data in _subsurface_data: _tmp_list = [_money_image.subsurface( (i*_sub_data[0], _y), _sub_data) for i in range(4)] _y += _sub_data[1] self.money_images.append(_tmp_list) _item_rare_image = pygame.image.load( get_file_path('img/item/rare_42x44.png')).convert_alpha() self.item_rare_images = [_item_rare_image.subsurface( (i*ITEM_RARE_SIZE[0], 0), ITEM_RARE_SIZE) for i in range(6)] # load icons, but now only load one image self.item_icons = pygame.image.load( get_file_path('img/item/04000019.png')).convert_alpha()
def __init__(self): self._image = pygame.image.load( get_file_path('img/ui/damage.png')).convert_alpha() self.damage_images = { 'normal': [self._image.subsurface( (i*NORMAL_DAMAGE[0], 0), NORMAL_DAMAGE) for i in range(10)], 'critical': [self._image.subsurface( (i*CRITICAL_DAMAGE[0], NORMAL_DAMAGE[1]), CRITICAL_DAMAGE) for i in range(10)], 'critical_icon': self._image.subsurface( (0, NORMAL_DAMAGE[1]+CRITICAL_DAMAGE[1]), (44, 38))} self.damage_queue = IQueue(MAX_DAMAGE_COUNT) self.passed_time_second = 0
def load_map_data(self, filename): filename = 'map/' + filename + '.pkl' with open(get_file_path(filename), 'rb') as f: return pickle.load(f)
def load_mob_data(self, filename): filename = 'mob/' + filename + '.pkl' data = None with open(get_file_path(filename), 'rb') as f: data = pickle.load(f) return data
data = { 'background_img': 'img/area/GrassSoil/back.png', 'tiles_img': 'img/area/GrassSoil/tiles.png', 'mob_id': ['mob0100100'], 'footholds': [{ 'pos': (450, 350), 'size': (336, 176), 'tiles': [ {'sub_pos': (142, 54), 'size': (26, 176)}, {'sub_pos': [(0, 54), (71, 54)], 'size': (71, 176), 'repeat': 4}, {'sub_pos': (168, 54), 'size': (26, 176)}] }, { 'pos': (0, 512), 'size': (639, 176), 'tiles': [ {'sub_pos': [(0, 54), (71, 54)], 'size': (71, 176), 'repeat': 9}] }, { 'pos': (639, 464), 'size': (321, 176), 'tiles': [ {'sub_pos': [(0, 54), (71, 54)], 'size': (71, 176), 'repeat': 5}] }] } with open(get_file_path('map/map0001.pkl'), 'wb') as f: pickle.dump(data, f)
def get_connection(): return sqlite3.connect(util.get_file_path('labelling/tweets.db'))
total_items = get_total_items(collection_handle) while len(handles) < total_items and (len(handles) == 0 or handles[-1]['year'] < stop_year): time.sleep(5) new_handles = get_handles_on_browse_page(collection_handle, offset, rpp) if not len(new_handles): break handles = handles + new_handles offset = offset + rpp print("Total handles downloaded: ", len(handles)) print("Downloaded {} handles for collection {}.".format( str(len(handles)), collection_handle)) return handles if __name__ == "__main__": for handle in get_sub_community_handles( "mit_depts_with_subcommunities.json"): time.sleep(5) if os.path.exists(util.get_file_path(handle)): print("Data file for {} exists. Skipping.".format(handle)) continue handles = download_handles_in_collection(handle) if handles: with open(util.get_file_path(handle), mode='w') as fp: json.dump(handles, fp, indent=2) else: logger.error( "Got empty list for {}. Skipping saving.".format(handle))