コード例 #1
0
def eval_model(args):
    """Evaluate model on training data."""
    cfg, lbl = util.get_label_cfg_by_args(args)
    uid = cfg['uniqueid']
    print('We are playing with %s' % uid)
    outdir = 'models/%s/gate_expert' % uid
    outname = 'gate_expert_model.pt'
    if KLLOSS:
        outname = 'gate_expert_kldiv_model.pt'
    if args.warm:
        outname = outname.replace('.pt', '_warm.pt')
    mdl_path = os.path.join(outdir, outname)
    gate_expert = GateExpertNet(mdl_path, args.argmax)
    eval_fun = gate_expert.get_y

    data = npload(cfg['file_path'], uid)
    datax = data[cfg['x_name']]
    datay = data[cfg['y_name']]
    evaly = eval_fun(datax)
    print(np.histogram(evaly[:, 48]))
    fig, ax = pld.get3dAxis()
    ax.scatter(datax[:, 0], datax[:, 1], evaly[:, 48])
    loss = l1loss(evaly, datay)
    err_norm = np.mean(loss, axis=1)
    fig, ax = plt.subplots()
    ax.hist(err_norm)
    plt.show()
コード例 #2
0
def eval_final_label(args):
    """Evaluation of labels on the training set."""
    cfg, lbl = util.get_label_cfg_by_args(args)
    uid = cfg['uniqueid']
    print('We are playing with %s' % uid)
    outdir = 'models/%s/gate_expert' % uid
    outname = 'gate_expert_model.pt'
    if KLLOSS:
        outname = 'gate_expert_kldiv_model.pt'
    if args.warm:
        outname = outname.replace('.pt', '_warm.pt')
    mdl_path = os.path.join(outdir, outname)
    gate_expert = GateExpertNet(mdl_path, False)
    eval_fun = gate_expert.get_p_y

    data = npload(cfg['file_path'], uid)
    datax = data[cfg['x_name']]
    p, v = eval_fun(datax)

    label = np.argmax(p, axis=1)

    if args.draw:
        fig, ax = plt.subplots()
        n_expert = np.amax(label) + 1
        for i in range(n_expert):
            mask = label == i
            ax.scatter(datax[mask, 0], datax[mask, 1])
        plt.show()

    label_name = 'data/pen/gate_expert_label.npy'
    if KLLOSS:
        label_name = label_name.replace('_label', '_kldiv_label')
    if args.warm:
        label_name = label_name.replace('.npy', '_warm.npy')
    np.save(label_name, label)
コード例 #3
0
def eval_model_on_valid(args):
    """Evaluate model on the validation set."""
    cfg, lbl = util.get_label_cfg_by_args(args)
    uid = cfg['uniqueid']
    print('We are playing with %s' % uid)
    outdir = 'models/%s/gate_expert' % uid
    outname = 'gate_expert_model.pt'
    if KLLOSS:
        outname = 'gate_expert_kldiv_model.pt'
    if args.warm:
        outname = outname.replace('.pt', '_warm.pt')
    mdl_path = os.path.join(outdir, outname)
    gate_expert = GateExpertNet(mdl_path, False)
    eval_fun = gate_expert.get_y

    valid_set = np.load(cfg['valid_path'])
    valid_x = valid_set[cfg['x_name']]
    valid_y = valid_set[cfg['y_name']]
    predy = eval_fun(valid_x)
    # dump output into some file
    valid_name = 'data/%s/gate_expert_valid_data.npz' % uid
    if KLLOSS:
        valid_name = valid_name.replace('_valid', '_kldiv_valid')
    if args.warm:
        valid_name = valid_name.replace('.npz', '_warm.npz')
    np.savez(valid_name, x=valid_x, y=predy)
コード例 #4
0
def main():
    # pen, car, drone specifies which dataset to use
    # the next five clustering approach specifies which data to load
    args = getArgs('pen', 'car', 'drone', 'kmean', 'pcakmean', 'speuclid',
                   'spdydx', 'spvio', 'neighbor10', 'umap', 'pca')
    cfg, lbl_name = get_label_cfg_by_args(args)
    if args.umap:  # I am done using this
        draw_umap_label(cfg, lbl_name)
    elif args.pca:
        draw_pca_label(cfg, lbl_name)
    else:
        check_cluster_label(cfg, lbl_name, args.neighbor)
コード例 #5
0
def eval_model_on_valid(args):
    """Evaluate model on the validation set."""
    cfg, lbl = util.get_label_cfg_by_args(args)
    uid = cfg['uniqueid']
    print('We are playing with %s' % uid)
    outdir='models/%s/mom' % uid
    outname='mom_model.pt'
    eval_fun = momLoader(os.path.join(outdir, outname), args.prob, False)
    valid_set = np.load(cfg['valid_path'])
    valid_x = valid_set[cfg['x_name']]
    valid_y = valid_set[cfg['y_name']]
    predy = eval_fun(valid_x)
    # dump output into some file
    np.savez('data/%s/mom_valid_data.npz' % uid, x=valid_x, y=predy)
コード例 #6
0
def main():
    # num shows dataset size
    # drawpca draws pca results for datasets
    # umap draws scatter plot of umap projection
    # penscatter draws scatter plot on pendulum dataset, we draw scatter plot of x0
    args = util.get_args('num', 'drawpca', 'umap', 'penscatter')
    cfg, lbl = util.get_label_cfg_by_args(args)
    if args.num:
        show_dataset_size(cfg)
    if args.drawpca:
        drawPCA(cfg)
    if args.umap:
        drawUMap(cfg)
    if args.penscatter:
        drawPenScatter(cfg)
コード例 #7
0
def eval_final_label(args):
    """Evaluation of labels on the training set."""
    cfg, lbl = util.get_label_cfg_by_args(args)
    uid = cfg['uniqueid']
    print('We are playing with %s' % uid)
    outdir = 'models/%s/moe' % uid
    outname = 'moe_model.pt'
    mdl_path = os.path.join(outdir, outname)
    eval_fun = get_moe_loader(mdl_path, True)

    data = npload(cfg['file_path'], uid)
    datax = data[cfg['x_name']]
    p, v = eval_fun(datax)

    label = np.argmax(p, axis=1)

    np.save('data/pen/moe_label.npy', label)
コード例 #8
0
def train_model_warm(args):
    """Train that model warmly by loading some pre-trained models.

    We say warm we mean we pretrain gate or experts. Not sure which I should use instead.
    Maybe I really need a function to modify weights of GaoNet to consider xScale and yScale
    """
    cfg, lbl_name = util.get_label_cfg_by_args(args)
    uid = cfg['uniqueid']
    result = util.get_clus_reg_by_dir('models/%s/%s' % (uid, lbl_name))
    cls, regs = result[5]  # we know this is bad but could possibly work
    cls_data = torch.load(cls)
    print(cls_data.keys())
    cls_net = cls_data['model']
    xmean, xstd = cls_data['xScale']
    print('xmean', xmean, 'xstd', xstd)
    # cls_net.extendXYScale((xmean, xstd))
    expert = Experts([[2, 60, 75]] * 5)
    run_the_training(args, cls_net, expert)
コード例 #9
0
def eval_model(args):
    """Evaluate a model."""
    cfg, lbl = util.get_label_cfg_by_args(args)
    eval_rst = run_the_training(args)
    y = eval_rst['y']
    if args.prob:
        x = eval_rst['x']
        p, predy = eval_rst['predy']
        print(p.shape, predy.shape)
        argmax_idx = np.argmax(p, axis=1)
        n_model = np.amax(argmax_idx) + 1
        fig, ax = plt.subplots()
        for i in range(n_model):
            mask = argmax_idx == i
            ax.scatter(*x[mask].T)
        plt.show()
    else:
        predy = eval_rst['predy']
        n_data = y.shape[0]
        # get error
        error_y = y - predy
        error_norm = np.linalg.norm(error_y, axis=1)
        # get histogram
        fig, ax = plt.subplots()
        ax.hist(error_norm, bins='auto')
        ax.set_xlabel('Prediction Error')
        ax.set_ylabel('Count')

        diff_angle = y[:, 48] - predy[:, 48]
        fig, ax = plt.subplots()
        ax.hist(diff_angle, bins='auto')
        ax.set_xlabel(r'$\theta_f$ Error')
        ax.set_ylabel('Count')
        # show difference
        error_order = np.argsort(error_norm)
        for i in range(n_data // 10):
            fig, ax = plt.subplots()
            for j in range(10):
                idx = -1 - (i * 10 + j)
                ax.plot(y[idx], color='C%d' % j)
                ax.plot(predy[idx], color='C%d' % j, ls='--')
            plt.show()
コード例 #10
0
def run_the_training(args):
    """Run the MoE training without using any clustering information but let it find it on its own."""
    cfg, lbl = util.get_label_cfg_by_args(args)
    uid = cfg['uniqueid']
    print('We are playing with %s' % uid)
    data = npload(cfg['file_path'], uid)
    data_feed = {'x': data[cfg['x_name']], 'y': data[cfg['y_name']]}
    dimx = data_feed['x'].shape[1]
    dimy = data_feed['y'].shape[1]
    n_model = args.k
    # create the network
    net = MoMNet([dimx, 100, n_model], [[dimx, int(np.ceil(300.0 / n_model)), dimy] for _ in range(n_model)])
    net.argmax = False
    config = genTrainConfig(outdir='models/%s/mom' % uid, outname='mom_model.pt', overwrite=False)
    if args.eval:
        mdl_path = os.path.join(config['outdir'], config['outname'])
        eval_fun = momLoader(mdl_path, withclus=args.prob, argmax=False)
        predy = eval_fun(data_feed['x'])
        return {'x': data_feed['x'], 'y': data_feed['y'], 'predy': predy}
    trainOne(config, data_feed, net=net)
コード例 #11
0
def main():
    # pen, car, drone still means which problem we want to look into
    # pcakmean specifies the clustering approach we intend to use
    # error means we calculate evaluation error on the validation set
    # constr means we evaluate constraint violation
    # eval just evaluates data on validation set and save into a npz file for rollout validation
    # snn means we evaluate SNN network
    # roll means look into rollout results and extract useful information. It turns out they all fail, somehow
    args = util.get_args('debug', 'error', 'constr', 'eval', 'snn', 'roll')
    global DEBUG
    if args.debug:
        DEBUG = True
    cfg, lbl_name = util.get_label_cfg_by_args(args)
    if args.error:
        eval_valid_error(cfg, lbl_name, args)
    if args.constr:
        eval_valid_constr_vio(cfg, lbl_name, args)
    if args.eval:
        eval_on_valid(cfg, lbl_name, args)
    if args.roll:
        check_rollout_results(cfg, lbl_name, args)
コード例 #12
0
def main():
    # pen, car, drone still means which problem we want to look into
    # pcakmean specifies the clustering approach we intend to use
    # clas means we train classifier
    # debug enables debug mode
    # miss trains models that are missing, but why?
    args = util.get_args('debug', 'clas', 'miss')
    global DEBUG
    if args.debug:
        DEBUG = True
    cfg, lbl_name = util.get_label_cfg_by_args(args)
    if args.pen:
        def archi_fun(ratio):
            return gen_archi_fun([2, 300, 75], ratio, 20)
        clas = [2, 100, -1]
    elif args.car:
        def archi_fun(ratio):
            return gen_archi_fun([4, 200, 200, 149], ratio, 20)
        clas = [4, 500, -1]
    elif args.drone:
        def archi_fun(ratio):
            return gen_archi_fun([7, 1000, 1000, 317], ratio, 20)
        clas = [7, 1000, -1]
    elif args.dtwo:
        def archi_fun(ratio):
            return gen_archi_fun([11, 2000, 2000, 317], ratio, 30)
        clas = [11, 1000, -1]
    elif args.done:
        def archi_fun(ratio):
            return gen_archi_fun([7, 1000, 1000, 317], ratio, 30)
        clas = [7, 1000, -1]
    else:
        print('You have to choose one dataset')
        raise SystemExit
    if args.clas:
        train_model_classifier(cfg, lbl_name, clas)
    elif args.miss:
        train_missing_models(cfg, lbl_name, archi_fun)
    else:
        train_model_by_data(cfg, lbl_name, archi_fun)
コード例 #13
0
def run_the_training(args, clus=None, expert=None):
    """Run the MoE training without using any clustering information but let it find it on its own."""
    # load data
    cfg, lbl = util.get_label_cfg_by_args(args)
    uid = cfg['uniqueid']
    print('We are playing with %s' % uid)
    data = npload(cfg['file_path'], uid)
    data_feed = {'x': data[cfg['x_name']], 'y': data[cfg['y_name']]}
    dimx = data_feed['x'].shape[1]
    dimy = data_feed['y'].shape[1]

    # create gate and expert
    if clus is None:
        n_model = 5
        clus = GaoNet([dimx, 100, n_model])
        expert = Experts([[dimx, 60, dimy]] * n_model)
    # cuda it
    clus.cuda()
    expert.cuda()

    # set data loader
    xname, yname = 'x', 'y'
    factory = KeyFactory(data_feed, xname, yname, scalex=True, scaley=True)
    factory.shuffle(None)

    draw_clus_region(clus, data_feed['x'], factory)

    # create two sets
    trainsize = 0.8
    trainSet = SubFactory(factory, 0.0, trainsize)
    testSet = SubFactory(factory, trainsize, 1.0)
    batch_size = 32
    test_batch_size = -1
    trainLder = DataLoader(trainSet, batch_size=batch_size, shuffle=False)
    testLder = DataLoader(testSet, batch_size=test_batch_size, shuffle=False)

    # set up file output
    outname = 'gate_expert_model.pt'
    outdir = 'models/pen/gate_expert'
    if KLLOSS:
        outname = 'gate_expert_kldiv_model.pt'
    if args.warm:
        outname = outname.replace('.pt', '_warm.pt')

    # set optimizer
    lr = 1e-3
    opt_G = torch.optim.Adam(clus.parameters(), lr=lr)
    opt_E = torch.optim.Adam(expert.parameters(), lr=lr)

    # set other training stuff
    n_epoch = 500
    back_check_epoch = 8
    best_test_loss = np.inf
    best_test_loss_expert = np.inf
    best_test_epoch = 0

    def get_mean_error(g_y, exp_y, feedy):
        """Calculate two loss"""
        error_traj = torch.mean((exp_y - feedy.expand_as(exp_y))**2, dim=2).t()
        g = f.softmax(g_y)
        log_g = f.log_softmax(g_y)
        posterior = g * torch.exp(
            -0.5 * error_traj)  # b by r probability, not scaled to 1
        traj_prob = torch.mean(-torch.log(torch.sum(posterior, dim=1)))
        if KLLOSS:
            posterior_scale = Variable(
                (posterior / torch.sum(posterior, dim=1, keepdim=True)
                 ).data)  # do not use gradient of it
            div_error = f.kl_div(log_g, posterior_scale)
            return traj_prob, div_error
        else:
            Og = torch.sum(exp_y * g.t().unsqueeze(2), dim=0)
            traj_error = f.smooth_l1_loss(Og, feedy)
            return traj_prob, traj_error

    # start training
    for epoch in range(n_epoch):
        sum_train_loss = 0
        sum_train_loss_prob = 0
        for idx, batch_data in enumerate(trainLder):
            feedy = Variable(batch_data[yname], requires_grad=False).cuda()
            feedx = Variable(batch_data[xname], requires_grad=False).cuda()
            # train experts
            opt_E.zero_grad()
            opt_G.zero_grad()
            exp_y = expert(feedx)
            g_y = clus(feedx)
            g = f.softmax(g_y)  # this is prior
            log_g = f.log_softmax(g_y)
            error_traj = torch.mean((exp_y - feedy.expand_as(exp_y))**2,
                                    dim=2).t()
            posterior = g * torch.exp(
                -0.5 * error_traj)  # b by r probability, not scaled to 1
            posterior_scale = Variable(
                (posterior / torch.sum(posterior, dim=1, keepdim=True)
                 ).data)  # do not use gradient of it
            lossi = torch.mean(-torch.log(torch.sum(posterior, dim=1)))
            lossi.backward(retain_graph=True)
            sum_train_loss_prob += lossi.cpu().data.numpy() * feedx.size()[0]
            opt_E.step()
            # update h by regression error
            all_pred = exp_y
            if KLLOSS:
                error = f.kl_div(log_g, posterior_scale)
            else:
                Og_before = all_pred * g.t().unsqueeze(2)
                Og = torch.sum(Og_before, dim=0)
                error = f.smooth_l1_loss(Og, feedy)
            sum_train_loss += error.cpu().data.numpy() * feedx.size()[0]
            error.backward()
            opt_G.step()
            # val = clus.printWeights(3)
        mean_train_loss = sum_train_loss / trainLder.getNumData()
        mean_train_loss_prob = sum_train_loss_prob / trainLder.getNumData()

        # evaluate on test data
        sum_test_loss_gate = 0
        sum_test_loss_expert = 0
        n_test_data = testLder.getNumData()
        for idx, batch_data in enumerate(testLder):
            feedy = Variable(batch_data[yname], volatile=True).cuda()
            feedx = Variable(batch_data[xname], volatile=True).cuda()
            exp_y = expert(feedx)
            g_y = clus(feedx)
            traj_prob, div_error = get_mean_error(g_y, exp_y, feedy)
            sum_test_loss_gate += div_error.cpu().data.numpy() * feedx.size(
            )[0]
            sum_test_loss_expert += traj_prob.cpu().data.numpy() * feedx.size(
            )[0]
        mean_test_loss_gate = sum_test_loss_gate / n_test_data
        mean_test_loss_expert = sum_test_loss_expert / n_test_data
        print('epoch %d gate loss %f expert loss %f test gate loss %f expert loss %f' \
                % (epoch, mean_train_loss, mean_train_loss_prob, mean_test_loss_gate, mean_test_loss_expert))
        if mean_test_loss_gate < best_test_loss:
            best_test_loss = mean_test_loss_gate
            best_test_epoch = epoch
        if mean_test_loss_expert < best_test_loss_expert:
            best_test_loss_expert = mean_test_loss_expert
            best_test_epoch = epoch
        if epoch > best_test_epoch + back_check_epoch:
            break
    print('Save model now')

    # draw region for classifier
    draw_clus_region(clus, data_feed['x'], factory)

    clus.cpu()
    expert.cpu()
    model = {
        'gate': clus,
        'expert': expert,
        'xScale': [trainLder.xmean, trainLder.xstd],
        'yScale': [trainLder.ymean, trainLder.ystd]
    }
    if not os.path.exists(outdir):
        os.mkdir(outdir)
    torch.save(model, os.path.join(outdir, outname))
コード例 #14
0
def main():
    args = util.get_args('show')
    cfg, lbl_name = util.get_label_cfg_by_args(args)
    show_picky_states(cfg, lbl_name, args)
コード例 #15
0
def main():
    args = util.get_args()
    cfg, lbl = util.get_label_cfg_by_args(args)
    show_picky_examples(cfg)