コード例 #1
0
ファイル: train.py プロジェクト: testanull/DeepLearning-OCR
def main():
	# img_width, img_height = 48, 48
	img_width, img_height = 200, 60
	img_channels = 1 
	# batch_size = 1024
	batch_size = 32
	nb_epoch = 1000
	post_correction = False

	save_dir = 'save_model/' + str(datetime.now()).split('.')[0].split()[0] + '/' # model is saved corresponding to the datetime
	train_data_dir = 'train_data/ip_train/'
	# train_data_dir = 'train_data/single_1000000/'
	val_data_dir = 'train_data/ip_val/'
	test_data_dir = 'test_data//'
	weights_file_path = 'save_model/2016-10-27/weights.11-1.58.hdf5'
	char_set, char2idx = get_char_set(train_data_dir)
	nb_classes = len(char_set)
	max_nb_char = get_maxnb_char(train_data_dir)
	label_set = get_label_set(train_data_dir)
	# val 'char_set:', char_set
	print 'nb_classes:', nb_classes
	print 'max_nb_char:', max_nb_char
	print 'size_label_set:', len(label_set)
	model = build_shallow(img_channels, img_width, img_height, max_nb_char, nb_classes) # build CNN architecture
	# model.load_weights(weights_file_path) # load trained model

	val_data = load_data(val_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx)
	# val_data = None 
	train_data = load_data(train_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx) 
	train(model, batch_size, nb_epoch, save_dir, train_data, val_data, char_set)
コード例 #2
0
ファイル: train.py プロジェクト: zhangfaen/DeepLearning-OCR
def main():
    # img_width, img_height = 48, 48
    img_width, img_height = 200, 60
    img_channels = 1
    # batch_size = 1024
    batch_size = 32
    nb_epoch = 1000
    post_correction = False

    save_dir = 'save_model/' + str(datetime.now()).split('.')[0].split(
    )[0] + '/'  # model is saved corresponding to the datetime
    train_data_dir = 'train_data/ip_train/'
    # train_data_dir = 'train_data/single_1000000/'
    val_data_dir = 'train_data/ip_val/'
    test_data_dir = 'test_data//'
    weights_file_path = 'save_model/2016-10-27/weights.11-1.58.hdf5'
    char_set, char2idx = get_char_set(train_data_dir)
    nb_classes = len(char_set)
    max_nb_char = get_maxnb_char(train_data_dir)
    label_set = get_label_set(train_data_dir)
    # val 'char_set:', char_set
    print 'nb_classes:', nb_classes
    print 'max_nb_char:', max_nb_char
    print 'size_label_set:', len(label_set)
    model = build_shallow(img_channels, img_width, img_height, max_nb_char,
                          nb_classes)  # build CNN architecture
    # model.load_weights(weights_file_path) # load trained model

    val_data = load_data(val_data_dir, max_nb_char, img_width, img_height,
                         img_channels, char_set, char2idx)
    # val_data = None
    train_data = load_data(train_data_dir, max_nb_char, img_width, img_height,
                           img_channels, char_set, char2idx)
    train(model, batch_size, nb_epoch, save_dir, train_data, val_data,
          char_set)
コード例 #3
0
ファイル: models.py プロジェクト: testanull/DeepLearning-OCR
 def __init__(self):
     self.char_set = get_char_set(self.train_data_dir)[0]
     self.nb_classes = len(self.char_set)
     self.max_nb_char = get_maxnb_char(self.train_data_dir)
     self.label_set = get_label_set(self.train_data_dir)
     self.pred_probs = None
コード例 #4
0
ファイル: models.py プロジェクト: zhangfaen/DeepLearning-OCR
 def __init__(self):
     self.char_set = get_char_set(self.train_data_dir)[0]
     self.nb_classes = len(self.char_set)
     self.max_nb_char = get_maxnb_char(self.train_data_dir)
     self.label_set = get_label_set(self.train_data_dir)
     self.pred_probs = None