def fit_map_pickle_result( map_file, begin, num_iter, model, nfits, maxitr, ncpu, odir ): from ..base.weightmatrix import load_2_as_dict wld_args = load_2_as_dict(map_file, dont_load_matrix=None, verbose=True) from ..base.weightmatrix import get_keys_of_W_in_bounds keys = get_keys_of_W_in_bounds(begin, num_iter, wld_args['W'].shape[0]) fits = __fit_map(wld_args, keys, model, nfits, maxitr, ncpu) result = {'model':model, 'fits':fits, 'map':wld_args } # from ..base import make_working_dir_sub # work_dir = make_working_dir_sub(odir, 'fits') from ..base import make_filename writefilename = make_filename(map_file, 'paramfits_rgc_'+model+'_'+'('+str(keys[0])+','+str(keys[-1])+')', '.fits', odir=odir) from util import pickle_fits pickle_fits(writefilename+'.fits', result)
def __write_clustered_fits( args, num_types_list=[], prototype_color=[], idx_list=[], depickled_fits={}, odir=None, num_dead_rf=0, per_dead_rf=0 ): """write clustered data""" cl_dict = { "num_each_cluster": num_types_list, "prototype_cluster": prototype_color, "cluster_index_list": idx_list, "num_dead_rf": num_dead_rf, "per_dead_rf": per_dead_rf, } import argparse if type(args) == argparse.Namespace: cl_dict["num_clusters"] = args.n cl_dict["args"] = { "alg": args.alg, "nz": args.nz, "chr": args.chr, "err": args.err, "csp": args.csp, "n": args.n, "t": args.t, "alg": args.alg, "rec": args.rec, "fold": args.fold, } args_file = args.file else: cl_dict["num_clusters"] = args["n"] cl_dict["args"] = args args_file = args["file"] depickled_fits["dic_cluster"] = cl_dict misc = __build_filename_from_args(args) fname = "clustered_rgc_" + misc from ..base import make_filename writefilename = make_filename(args_file, fname, ".cfits", odir=odir) from util import pickle_fits pickle_fits(writefilename + ".cfits", depickled_fits) return writefilename
def make_proto_filter( args_file, args_odir, args_model, synthetic_pos=True, mean_rec=True, max_dist_to_center=2, meanlen=None, min_err_metric=True, abs_weight_threshold=0.7, indices=None, debug=False, odir_nosubdir=False, ): hand_automatic = indices == None '''loading precomputed fits''' from util import depickle_fits res = depickle_fits(args_file, suffix='cfits') '''retrieving weightmatrix from fits dic''' W = res['map']['W'] vis = res['map']['vis'] map_as_dict = res['map'] assert map_as_dict['mode'] == 'rgb' '''get fit and cluster data''' fits = res['fits'] fit_keys = fits.keys() model = res['model'] cl = res['dic_cluster'] num_channel = cl['num_clusters'] '''move RF ids in an appropiate data struc, ignore zeros''' clusters_by_index = [[] for c in [None]*num_channel] keys = sorted(fit_keys) for i, key in enumerate(keys): cl = fits[key]['cl'] clusters_by_index[cl].append(key) from ..base.receptivefield import convert_rfvector_to_rgbmatrix from ..base.plots import colormap_for_mode cmap = colormap_for_mode(map_as_dict['mode']) from ..base import make_filename from cluster import __transpose_zero_to_one if mean_rec: '''of every channel mean the fitted parameters''' import numpy as N num_param = len(fits[fit_keys[-1]]['p']) clusters_p_mean = [N.zeros(num_param) for c in [None]*num_channel] for c in xrange(0,len(clusters_by_index)): cl_ids = clusters_by_index[c] if meanlen is None: len_cl_id = len(cl_ids) else: len_cl_id = meanlen p_mean_tmp = [] for i in xrange(0, len_cl_id): p = fits[cl_ids[i]]['p'] p_mean_tmp.append(p) p_mean = N.mean(p_mean_tmp, axis=0) clusters_p_mean[c] = N.copy(p_mean) if model=='dog': from dog import reconstruct else: from edog import reconstruct else: import numpy as N hand_by_index = [[] for c in [None]*num_channel] zpx = vis/2. zpy = vis/2. max_absmax = 0 if not hand_automatic: '''use provided indices ... handchosen''' for i, index in enumerate(indices): if i == num_channel: break hand_by_index[i] = index else: '''chose automatically: for each channel find the RF with smallest error (and max value > .7), in distance close to the center vis field.''' for c in xrange(0,len(clusters_by_index)): cl_ids = clusters_by_index[c] len_cl_id = len(cl_ids) min_err, min_err_id, min_dist, min_id = N.inf, -1, N.inf, -1 for i in xrange(0, len_cl_id): p = fits[cl_ids[i]]['real_pix_center_coords'] n = fits[cl_ids[i]]['n'] err = fits[cl_ids[i]]['err'] dist = N.sqrt((zpy - p[0])**2 + (zpx - p[1])**2) absmax = N.max(N.abs(W[n])) if err < min_err and absmax > abs_weight_threshold and dist < max_dist_to_center: min_err = err min_err_id = n if dist < min_dist and absmax > abs_weight_threshold: min_dist = dist min_id = n '''statistic''' if absmax > max_absmax: max_absmax = absmax if min_err_metric: hand_by_index[c] = min_err_id else: hand_by_index[c] = min_id '''store distance of fitted center point to center of visual field''' trans_rf = [] for n in hand_by_index: if type(n) == list: print 'Not enough RF indices for all channels given.\nnum channels:', num_channel, 'num indices:', len(indices), '\n' exit() if n == -1: print 'No prototype RF found. \nTry lowering wheight treshold\nparameter -thr is:', abs_weight_threshold, 'RF max abs weight:', absmax, '\n' exit() p = fits[n]['real_pix_center_coords'] dist_y = int(N.floor(zpy - p[0])) dist_x = int(N.floor(zpx - p[1])) trans_rf.append( (dist_y, dist_x) ) filters = [] plots = [] for c in xrange(0,num_channel): if mean_rec: p = clusters_p_mean[c] if synthetic_pos: p = N.concatenate([[map_as_dict['vis']/2., map_as_dict['vis']/2.], p[2:]]) proto_filter = reconstruct(p, map_as_dict['mode'], map_as_dict['vis']**2, map_as_dict['vis'], map_as_dict['W'][-1].shape) else: proto_filter = W[hand_by_index[c]] '''convert RF vector to matrix and normalize values''' proto_filter_matr = convert_rfvector_to_rgbmatrix( proto_filter, map_as_dict['vis'], map_as_dict['vis'], map_as_dict['mode']) proto_filter_matr = __transpose_zero_to_one(proto_filter_matr) '''move RF to visual fields center''' if not mean_rec: proto_filter_matr = N.roll(proto_filter_matr, trans_rf[c][0], axis=0) proto_filter_matr = N.roll(proto_filter_matr, trans_rf[c][1], axis=1) plots.append({ # 'name':('RF: '+str(hand_by_index[c])+' ' if not hand_automatic else '') + 'ch: '+str(c), 'name':'RF: '+str(hand_by_index[c])+' ' + ' ch: '+str(c), 'value':proto_filter_matr, 'maxmin':True, 'cmap':cmap, 'balance':False, 'invert':False, }) filters.append(N.copy(proto_filter_matr)) if not mean_rec: if hand_automatic: misc_str = 'auto_' else: misc_str = 'hand_' if min_err_metric: metr_str = 'err_' else: metr_str = 'dist_' else: misc_str = 'mean_' metr_str = '' if not odir_nosubdir: import os mod_odir = os.path.join(args_odir, '../') from ..base import make_working_dir_sub work_dir = make_working_dir_sub(mod_odir, 'proto') else: work_dir = args_odir fname = make_filename(args_file,misc_str+metr_str+'conv_proto','.png', work_dir) def numplots_to_rowscols(num): sq = int(num**.5)+1 return sq, sq from ..base.plots import write_row_col_fig row, col = numplots_to_rowscols(num_channel) write_row_col_fig(plots, row, col, fname+'.png', dpi=144, alpha=1.0, fontsize=6) dic = { 'mode': res['map']['mode'], 'num_chn': num_channel, 'filters': filters } writefilename = make_filename(args_file,misc_str+metr_str+'conv_proto','.kern', work_dir) from util import pickle_fits pickle_fits(writefilename+'.kern', dic) if debug: from ..base.plots import write_rf_fit_debug_fig for i, fmat in enumerate(filters): fmat = N.swapaxes(fmat, 0, 1) fvec = fmat.reshape(fmat.shape[0]*fmat.shape[1], fmat.shape[2]) fvecflat = N.copy(N.concatenate([fvec.T[0].T, fvec.T[1].T, fvec.T[2].T])) fvecflat -= .5 fvecflat *= 2. p = fits[hand_by_index[i]]['p'] p[0] = p[0] + trans_rf[i][0] p[1] = p[1] + trans_rf[i][1] if res['map']['mode'] == 'dog': from dog import reconstruct else: from edog import reconstruct rec = reconstruct(p, res['map']['mode'], vis**2, vis, fvecflat.shape) err = (fvecflat - rec)**2 # err = None # fname = make_filename(args_file,str(i)+'_debug','.png', work_dir) fname = work_dir + '/' + str(i)+'_debug'+'.png' write_rf_fit_debug_fig(fname, fvecflat, vis, 'rgb', p, rec, err, model, scale=2.8, s_scale=3.8, alpha=.5, dpi=300, draw_ellipsoid=True, no_title=True, ellipsoid_line_width=1.2)